Summary

Protocolo para medir as propriedades térmicas de um sintético areia-água-gás-hidrato de metano Amostra Supercooled

Published: March 21, 2016
doi:

Summary

We present a protocol for measuring the thermal properties of synthetic hydrate-bearing sediment samples comprising sand, water, methane, and methane hydrate.

Abstract

Methane hydrates (MHs) are present in large amounts in the ocean floor and permafrost regions. Methane and hydrogen hydrates are being studied as future energy resources and energy storage media. To develop a method for gas production from natural MH-bearing sediments and hydrate-based technologies, it is imperative to understand the thermal properties of gas hydrates.

The thermal properties’ measurements of samples comprising sand, water, methane, and MH are difficult because the melting heat of MH may affect the measurements. To solve this problem, we performed thermal properties’ measurements at supercooled conditions during MH formation. The measurement protocol, calculation method of the saturation change, and tips for thermal constants’ analysis of the sample using transient plane source techniques are described here.

The effect of the formation heat of MH on measurement is very small because the gas hydrate formation rate is very slow. This measurement method can be applied to the thermal properties of the gas hydrate-water-guest gas system, which contains hydrogen, CO2, and ozone hydrates, because the characteristic low formation rate of gas hydrate is not unique to MH. The key point of this method is the low rate of phase transition of the target material. Hence, this method may be applied to other materials having low phase-transition rates.

Introduction

Hidratos de gás são compostos cristalinos que compreendem estruturas de gaiola de moléculas de água ligadas a hidrogênio que contêm moléculas hóspedes na gaiola 1. Grandes quantidades de hidratos de metano (MHS) nas regiões de permafrost fundo do oceano e são recursos de energia no futuro interessantes, mas pode afetar as condições climáticas globais 2.

Em março de 2013, o óleo Japão, Gás e Metais National Corporation realizou o primeiro teste de produção offshore do mundo para extrair gás a partir de sedimentos MH-rolamento naturais no leste Nankai Trough pelo "método de despressurização" 3,4.

Hidratos de gás pode armazenar gases como o metano 1, hidrogênio 5, CO 2 1,6, e ozônio 7. Assim, metano e hidrogênio hidratos são estudados como armazenamento de energia potencial e meios de transporte. Para reduzir as emissões de CO2 liberadas na atmosfera, o CO 2 sequestração usando CO 2 hidratos em sedimentos do fundo do oceano têm sido estudados 6. O ozono é actualmente utilizada na purificação de água e esterilização de alimentos. Estudos de tecnologia de preservação de ozono foram realizados porque é quimicamente instável 7. A concentração de ozono em hidratos é muito maior do que em água ozonizada ou 7 gelo.

Para desenvolver a produção de gás a partir de sedimentos MH-rolamento naturais e tecnologias baseadas em hidrato, é imperativo para entender as propriedades térmicas de hidratos de gás. No entanto, os dados propriedades térmicas e estudos de modelos de gás sedimentos contendo hidratos são escassos 8.

O "método de despressurização" pode ser utilizado para dissociar MH no espaço dos poros do sedimento através da diminuição da pressão de poro abaixo da estabilidade do hidrato. Neste processo, os componentes espaciais sedimento poros mudar a partir de água e a partir de MH de água, MH, e gás. medição das propriedades térmicasdesta última condição é difícil porque o calor de fusão de MH podem afectar as medições. Para resolver este problema, Muraoka et al. Realizada a medição das propriedades térmicas em condições super-resfriados durante MH formação 9.

Com este protocolo vídeo, explicar o método de medição da amostra de areia-água-gás-MH sintético super-resfriado.

A Figura 1 mostra a instalação experimental para medir as propriedades térmicas do sedimento hidrato de metano-rolamento artificial. A configuração é a mesma mostrada em referência 9. O sistema compreende, principalmente, um reservatório de alta pressão, pressão e controle de temperatura, e as propriedades térmicas do sistema de medição. O reservatório de alta pressão é composto de aço inoxidável cilíndrico com um diâmetro interno de 140 mm, e uma altura de 140 mm; seu volume interno com o volume morto removido é 2.110 cm3, e seu limite de pressão é de 15 MPa. o transie fonte avião nt (TPS) técnica é usada para medir as propriedades térmicas 10. Nove sondas TPS com raios individual de 2.001 mm são colocados no interior da embarcação. A disposição dos nove sondas 9 é mostrada na Figura 2, em referência 9. As sondas TPS estão ligados ao analisador das propriedades térmicas com um cabo e mudado manualmente durante o experimento. Os detalhes do sensor TPS, diagrama de conexão e configuração no vaso são mostrados nas Figuras S1, 2 e 3 da informação de apoio em referência 9.

figura 1
Figura 1:. A montagem experimental para medir as propriedades térmicas do sedimento hidrato de metano-rolamento artificial A figura é modificada a partir de referência 9.3956fig1large.jpg "target =" _ blank "> Clique aqui para ver uma versão maior desta figura.

O método TPS foi usada para medir as propriedades térmicas de cada amostra. Os princípios do método são descritas na referência 10. Neste método, o aumento da temperatura em função do tempo, AT av, é

equação 1

Onde

equação 2

Na Equação 1, W 0 é a potência de saída do sensor, o símbolo r representa o raio da sonda de sensor, λ é a condutividade térmica da amostra, α é a difusividade térmica, e t é o tempo desde o início da alimentação de energia à sonda sensor. D (τ) é um tempo adimensional função dependente. τ </em> é dada por (aT / r) 1/2. Na Equação 2, o símbolo m representa o número de anéis concêntricos da sonda TPS e I 0 é uma função de Bessel modificada. A condutividade térmica, difusividade térmica e calor específico da amostra são simultaneamente determinado por análise de inversão aplicado ao aumento de temperatura que se forneça energia ao sensor de sonda.

Protocol

Nota: Por favor, consulte todas as fichas de dados de segurança do material relevantes como este estudo utiliza alta pressão inflamável gás metano e um grande reservatório de alta pressão. Usar um capacete, óculos de segurança e botas de segurança. Se o sistema de controlo pára temperatura, a pressão no recipiente aumenta com MH dissociação. Para evitar acidentes, o uso de um sistema de válvula de segurança é fortemente recomendada para libertar automaticamente o gás de metano para a atmosfera. O sistem…

Representative Results

A Figura 2a mostra o perfil de temperatura que não é afectada por MH fusão. AT C é a mudança de temperatura devido à medição "constantes térmicas. A Figura 2B mostra o perfil de temperatura que é afectada por MH fusão. O perfil na Figura 2b não pode ser analisada por meio das equações 1 e 2, porque estas equações são derivados assumindo condições estáveis ​​de amostra. <p class="jove_c…

Discussion

foi avaliado o efeito do calor formação de MH por medição. O calor formação de HM foi estimada a partir dos produtos da taxa de mudança de S h, como mostrado na Figura 3b, e a entalpia de formação H = 52,9 kJ mol -1 para MH 14. Por conseguinte, a mudança de temperatura máxima foi de 0,00081 ° C seg -1. Isto foi muito menor do que o aumento de temperatura AT C do sensor TPS entre 1 ° C e 1,5 ° C durante o inte…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Este estudo foi financiado pelo Consórcio de Pesquisa MH21 de hidrato de metano Recursos no Japão e no Programa Nacional de Hidratos de metano exploração por parte do Ministério da Economia, Comércio e Indústria. Os autores gostariam de agradecer T. Maekawa e S. Goto para a sua assistência com os experimentos.

figuras Reproduzido com permissão de (Muraoka, M., Susuki, N., Yamaguchi, H., Tsuji, T., Yamamoto, Y., combustíveis energéticos, 29 (3), 2015, 1345-1351, 2015, DOI.: 10.1021 / ef502350n). Copyright (2015) American Chemical Society.

Materials

TPS thermal probe, Hot disk sensor Hot Disk AB Co., Sweden #7577 Kapton sensor type, sensor radius 2.001 mm
Hot disk thermal properties analyzer Hot Disk AB Co., Sweden TPS 2500 
Toyoura standard silica sand Toyoura Keiseki Kogyo Co., Ltd., Japan N/A
Methane gas ,99.9999% Tokyo Gas Chemicals Co., Ltd., Japan N/A Grade 6N, Volume 47L, Charging pressure 14.7MPa
Water Purification System,Elix Advantage 3  Merck Millipore., U.S. N/A 5 MΩ cm (at 25°C) resistivity
Vibrating table, Vivratory packer Sinfonia Technology Co. Ltd., Japan VGP-60
Chiller, Thermostatic Bath Circulator  THOMAS KAGAKU Co., Ltd., Japan TRL-40SP
Coorant, Aurora brine Tokyo Fine Chemical Co.,Ltd., Japan N/A ethylene glycol 71wt%
Temparature gage Nitto Kouatsu., Japan N/A Pt 100, sheath-type platinum resistance temperature detector
Pressure gage Kyowa Electronic Instruments., Japan PG-200 KU
Data logger KEYENCE., Japan NR-500
Mass flow controller OVAL Co., Japan F-221S-A-11-11A Maximum flow 2000 Nml/M, maximum design pressure 19.6 MPa

Riferimenti

  1. Sloan, E. D., Koh, C. A. . Clathrate Hydrates of Natural Gases, 3rd ed. , (2007).
  2. Hatzikiriakos, S. G., Englezos, P. The relationship between global warming and methane gas hydrates in the earth. Chem. Eng. Sci. 48 (23), 3963-3969 (1993).
  3. Yamamoto, K. Overview and introduction: pressure core-sampling and analyses in the 2012-2013 MH21 offshore test of gas production from methane hydrates in the eastern Nankai Trough. Mar. Petrol. Geol. 66 (Pt 2), 296 (2015).
  4. Fujii, T., et al. Geological setting and characterization of a methane hydrate reservoir distributed at the first offshore production test site on the Daini-Atsumi Knoll in the eastern Nankai Trough, Japan. Mar. Petrol. Geol. 66 (Pt 2), 310 (2015).
  5. Mao, W. L., et al. Hydrogen clusters in clathrate hydrate. Science. 297 (5590), 2247-2249 (2002).
  6. Lee, S., Liang, L., Riestenberg, D., West, O. R., Tsouris, C., Adams, E. CO2 hydrate composite for ocean carbon sequestration. Environ. Sci. Technol. 37 (16), 3701-3708 (2003).
  7. Muromachi, S., Ohmura, R., Takeya, S., Mori, H. Y. Clathrate Hydrates for Ozone Preservation. J. Phys. Chem. B. 114, 11430-11435 (2010).
  8. Waite, W. F., et al. Physical properties of hydrate-bearing sediments. Rev. Geophys. 47 (4), (2009).
  9. Muraoka, M., Susuki, N., Yamaguchi, H., Tsuji, T., Yamamoto, Y. Thermal properties of a supercooled synthetic sand-water-gas-methane hydrate sample. Energy Fuels. 29 (3), 1345-1351 (2015).
  10. Gustafsson, S. E. Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev. Sci. Instrum. 62 (3), 797-804 (1991).
  11. Sakamoto, Y., Haneda, H., Kawamura, T., Aoki, K., Komai, T., Yamaguchi, T. Experimental Study on a New Enhanced Gas Recovery Method by Nitrogen Injection from a Methane Hydrate Reservoir. J. MMIJ. 123 (8), 386-393 (2007).
  12. Lee, B. I., Kesler, M. G. A generalized thermodynamic correlation based on three-parameter corresponding states. AIChE J. 21 (3), 510-527 (1975).
  13. Reid, R. C., Prausnitz, J. M., Poling, B. E. Chapter 3, Unit 3, 7. The properties of gases and liquids. , 47-49 (1987).
  14. Anderson, G. K. Enthalpy of dissociation and hydration number of methane hydrate from the Clapeyron equation. J. Chem. Thermodyn. 36 (12), 1119-1127 (2004).
  15. Waite, W. F., deMartin, B. J., Kirby, S. H., Pinkston, J., Ruppel, C. D. Thermal conductivity measurements in porous mixtures of methane hydrate and quartz sand. Geophys. Res. Lett. 29 (24), 82-1-82-4 (2002).
  16. Kumar, P., Turner, D., Sloan, E. D. Thermal diffusivity measurements of porous methane hydrate and hydrate-sediment mixtures. J. Geophys. Res. 109 (B1), (2004).
  17. Huang, D., Fan, S. Measuring and modeling thermal conductivity of gas hydrate-bearing sand. J. Geophys. Res. 110 (B1), (2005).
check_url/it/53956?article_type=t

Play Video

Citazione di questo articolo
Muraoka, M., Susuki, N., Yamaguchi, H., Tsuji, T., Yamamoto, Y. Protocol for Measuring the Thermal Properties of a Supercooled Synthetic Sand-water-gas-methane Hydrate Sample. J. Vis. Exp. (109), e53956, doi:10.3791/53956 (2016).

View Video