Summary

Sequenziale Applicazione di vetrini di vetro per valutare la compressione Rigidità della lente Mouse: Strain e morfometriche analisi

Published: May 03, 2016
doi:

Summary

Age-related increases in eye lens stiffness are linked to presbyopia. This protocol describes a simple, cost-effective method for measuring mouse lens stiffness. Mouse lenses, like human lenses, become stiffer with age. This method is precise and can be adapted for lenses from larger animals.

Abstract

La lente occhio è un organo trasparente che rifrange e si concentra la luce per formare una chiara immagine sulla retina. Negli esseri umani, contratto di muscoli ciliari deformare la lente, portando ad un aumento della potenza ottica della lente di concentrarsi su oggetti vicini, un processo noto come alloggio. Cambiamenti legati all'età in rigidità lente sono stati collegati a presbiopia, una riduzione nella lente 'possibilità di ospitare, e, per estensione, la necessità di occhiali da lettura. Anche se le lenti del mouse non ospitare o sviluppare presbiopia, modelli di mouse in grado di fornire uno strumento genetico prezioso per patologie lenti comprensione, e l'invecchiamento accelerato osservato nei topi permette lo studio dei cambiamenti legati all'età nella lente. Questo protocollo dimostra un metodo semplice, preciso e conveniente per determinare la rigidità della lente del mouse, utilizzando vetrini da applicare in sequenza crescente carichi di compressione sulla lente. Dati rappresentativi confermano che le lenti del mouse diventano più rigidi con l'età, comelenti umani. Questo metodo è altamente riproducibile e può potenzialmente essere scalata fino a meccanicamente le lenti di prova da animali più grandi.

Introduction

The lens is a transparent and avascular organ in the anterior chamber of the eye that is responsible for fine focusing of light onto the retina. A clear basement membrane, called the lens capsule, surrounds a bulk of elongated fiber cells covered by an anterior monolayer of epithelial cells1,2. Life-long growth of the lens depends on the continuous proliferation and differentiation of epithelial cells at the lens equator into new fiber cells that are added onto previous generations of fiber cells in a concentric manner2. Over time, lens fiber cells undergo compaction, resulting in a rigid center in the middle of the lens called the nucleus1. Accommodation, defined as a dioptric change in the optical power of the eye, occurs in humans when the ciliary muscles contract to deform the lens and allow a true increase in optical power to focus on near objects3-5. In the unaccommodated eye, the lens is held in a relatively flattened state due to tension from zonular fibers. When the ciliary muscles contract, the tension on the lens is released, leading to decreased lens equatorial diameter and increased axial thickness. Age-related changes in the lens cause presbyopia, a progressive loss of lens accommodation, which leads to the need for reading glasses.

Several studies have linked presbyopia to age-related increase in the intrinsic stiffness of the lens6-11. Stiffness is defined as the resistance of an elastic object to deform under applied load. A variety of methods have been used to examine stiffness of human lenses, including spin compression12-14, actuator compression15, probe indentation16, dynamic mechanical analysis 6,10 and bubble-based acoustic radiation force17. While mouse lenses do not accommodate or develop presbyopia, mouse models for lens pathologies are valuable tools because mice are less expensive than larger animals, well characterized genetically and undergo accelerated age-related changes due to rapid aging. A handful of studies have examined mouse lens stiffness with compression methods and demonstrated changes in lens stiffness due to aging or targeted genetic disruptions18-21. Thus, mouse lenses are good models for studying age-related changes in lens stiffness.

This protocol describes a simple and inexpensive, yet precise and reproducible, compression method for determining mouse lens stiffness based on application of glass coverslips onto the lens in conjunction with photographing the lens through a dissection microscope and mirror. This method yields robust strain and morphometric data with an easily fabricated and assembled apparatus. The representative results confirm that mouse lenses increase in stiffness with age.

Protocol

Tutte le procedure sugli animali sono stati eseguiti in conformità con le raccomandazioni della Guida per la cura e l'uso di animali da laboratorio dal National Institutes of Health e sotto un protocollo approvato dal Comitato Istituzionale cura e l'uso degli animali al The Scripps Research Institute. 1. Obiettivo dissezione Euthanize topi in base alle raccomandazioni del National Institutes of Health "Guida per la cura e l'uso di animali da laboratorio" e a…

Representative Results

La rigidità e dimensioni di 2, 4 e 8 mesi di età lenti di topo sono stati misurati. I topi sono stati tutti gli animali wild-type su un puro C57BL6 ceppo sfondo ottenuto dal Fondo Allevamento TSRI degli animali, e ogni obiettivo è stato caricato con da 1 a 10 lamelle. I ceppi assiali ed equatoriali sono stati calcolati in funzione del carico applicato misurando assiale e diametri equatoriale della lente dopo l'aggiunta di ciascun vetrino, quindi normalizzare ogni variazione di dia…

Discussion

Ci sono diverse considerazioni importanti quando si utilizza questo metodo per misurare la rigidità della lente. Innanzitutto, i coprioggetti sono applicati alla lente con un angolo leggermente obliqua (8 – 8,5 °) rispetto al fondo della camera (θ). Questo si applica una piccola componente del carico equatoriale piuttosto che assialmente. Tuttavia, questo carico equatoriale è considerata trascurabile, perché il peccato θ ≈ 0.1 19. Se questo metodo è adattato per lenti più grandi, l'angolo delle …

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This work was supported by National Eye Institute Grant R01 EY017724 (VMF) and National Institute of Arthritis and Musculoskeletal and Skin Diseases Grant K99 AR066534 (DSG).

Materials

Fine tip straight forceps Fine Scientific Tools 11252-40
Microdissection scissors, straight edge Fine Scientific Tools 15000-00
Curved forceps Fine Scientific Tools 11272-40
Seizing forceps Hammacher HSC 702-93 Optional
Dissection dish Fisher Scientific 12565154
60mm petri dish Fisher Scientific 0875713A
1X phosphate buffered saline (PBS) Life Technologies 14190
18mm x 18mm glass coverslips Fisher Scientific 12-542A
Measurement chamber with divots to hold lenses Custom-made (see Figure 1)
Right-angle mirror Edmund Optics 45-591
Light source Schott/Fostec 8375
Illuminated dissecting microscope Olympus SZX-ILLD100 With SZ-PT phototube
Digital camera Nikon Coolpix 990

Riferimenti

  1. Lovicu, F. J., Robinson, M. L. . Development of the ocular lens. , (2004).
  2. Piatigorsky, J. Lens differentiation in vertebrates. A review of cellular and molecular features. Differentiation. 19 (3), 134-153 (1981).
  3. Glasser, A. Restoration of accommodation: surgical options for correction of presbyopia. Clin Exp Optom. 91 (3), 279-295 (2008).
  4. Keeney, A. H., Hagman, R. E., Fratello, C. J. . Dictionary of ophthalmic optics. , (1995).
  5. Millodot, M. . Dictionary of optometry and visual science. 7, (2009).
  6. Heys, K. R., Cram, S. L., Truscott, R. J. Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia. Mol Vis. 10, 956-963 (2004).
  7. Heys, K. R., Friedrich, M. G., Truscott, R. J. Presbyopia and heat: changes associated with aging of the human lens suggest a functional role for the small heat shock protein, alpha-crystallin, in maintaining lens flexibility. Aging Cell. 6 (6), 807-815 (2007).
  8. Pierscionek, B. K. Age-related response of human lenses to stretching forces. Exp Eye Res. 60 (3), 325-332 (1995).
  9. Glasser, A., Biometric Campbell, M. C. optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia. Vision Res. 39 (11), 1991-2015 (1999).
  10. Weeber, H. A., van der Heijde, R. G. On the relationship between lens stiffness and accommodative amplitude. Exp Eye Res. 85 (5), 602-607 (2007).
  11. Weeber, H. A., et al. Dynamic mechanical properties of human lenses. Exp Eye Res. 80 (3), 425-434 (2005).
  12. Fisher, R. F. Elastic properties of the human lens. Exp Eye Res. 11 (1), 143 (1971).
  13. Krueger, R. R., Sun, X. K., Stroh, J., Myers, R. Experimental increase in accommodative potential after neodymium: yttrium-aluminum-garnet laser photodisruption of paired cadaver lenses. Ophthalmology. 108 (11), 2122-2129 (2001).
  14. Burd, H. J., Wilde, G. S., Judge, S. J. An improved spinning lens test to determine the stiffness of the human lens. Exp Eye Res. 92 (1), 28-39 (2011).
  15. Glasser, A., Campbell, M. C. Presbyopia and the optical changes in the human crystalline lens with age. Vision Res. 38 (2), 209-229 (1998).
  16. Pau, H., Kranz, J. The increasing sclerosis of the human lens with age and its relevance to accommodation and presbyopia. Graefes Arch Clin Exp Ophthalmol. 229 (3), 294-296 (1991).
  17. Hollman, K. W., O’Donnell, M., Erpelding, T. N. Mapping elasticity in human lenses using bubble-based acoustic radiation force. Exp Eye Res. 85 (6), 890-893 (2007).
  18. Baradia, H., Nikahd, N., Glasser, A. Mouse lens stiffness measurements. Exp Eye Res. 91 (2), 300-307 (2010).
  19. Gokhin, D. S., et al. Tmod1 and CP49 synergize to control the fiber cell geometry, transparency, and mechanical stiffness of the mouse lens. PLoS One. 7 (11), e48734 (2012).
  20. Sindhu Kumari, S., et al. Role of Aquaporin 0 in lens biomechanics. Biochem Biophys Res Commun. , (2015).
  21. Fudge, D. S., et al. Intermediate filaments regulate tissue size and stiffness in the murine lens. Invest Ophthalmol Vis Sci. 52 (6), 3860-3867 (2011).
  22. Kuszak, J. R., Mazurkiewicz, M., Zoltoski, R. Computer modeling of secondary fiber development and growth: I. Nonprimate lenses. Mol Vis. 12, 251-270 (2006).
  23. Scarcelli, G., Kim, P., Yun, S. H. In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy. Biophys J. 101 (6), 1539-1545 (2011).
check_url/it/53986?article_type=t

Play Video

Citazione di questo articolo
Cheng, C., Gokhin, D. S., Nowak, R. B., Fowler, V. M. Sequential Application of Glass Coverslips to Assess the Compressive Stiffness of the Mouse Lens: Strain and Morphometric Analyses. J. Vis. Exp. (111), e53986, doi:10.3791/53986 (2016).

View Video