Summary

使用多色荧光检测液滴微流控光纤

Published: May 05, 2016
doi:

Summary

Multicolor fluorescence detection in droplet microfluidics typically involves bulky and complex epifluorescence microscope-based detection systems. Here we describe a compact and modular multicolor detection scheme that utilizes an array of optical fibers to temporally encode multicolor data collected by a single photodetector.

Abstract

Fluorescence assays are the most common readouts used in droplet microfluidics due to their bright signals and fast time response. Applications such as multiplex assays, enzyme evolution, and molecular biology enhanced cell sorting require the detection of two or more colors of fluorescence. Standard multicolor detection systems that couple free space lasers to epifluorescence microscopes are bulky, expensive, and difficult to maintain. In this paper, we describe a scheme to perform multicolor detection by exciting discrete regions of a microfluidic channel with lasers coupled to optical fibers. Emitted light is collected by an optical fiber coupled to a single photodetector. Because the excitation occurs at different spatial locations, the identity of emitted light can be encoded as a temporal shift, eliminating the need for more complicated light filtering schemes. The system has been used to detect droplet populations containing four unique combinations of dyes and to detect sub-nanomolar concentrations of fluorescein.

Introduction

液滴的微流体通过在大量悬浮在载体油1水性液滴的compartmentalizing实验提供用于高通量生物学的平台。液滴已被用于应用程序作为不同的单细胞分析2中 ,数字聚合酶链反应(PCR)3,和酶进化4。荧光测定法检测的液滴的微流体的标准模式下,作为其亮信号和快速响应时间与在千赫速率检测子纳升液滴体积兼容。许多应用需要荧光检测用于同时至少两种颜色。例如,我们的实验室通常进行的PCR活化使用一个检测信道为一个化验结果液滴排序的实验中,并使用二次背景染料,使测定阴性液滴可数5。

液滴微流体典型检测站BAsed的上表面荧光显微镜,并需要复杂的光操作计划,以从自由空间激光引入激励光成显微镜被聚焦在样品上。荧光从液滴射出后,所发射的荧光的光进行滤波,使得每个检测信道利用中心波长频带设为一光电倍增管(PMT)。落射荧光显微镜基于光学检测系统,由于其费用,复杂性提供了一个进入门槛,并要求维修。光纤提供的装置构造的简化和健壮检测方案,由于纤维可以手动插入微流体装置,除去基于镜面光路由的需要,并且允许光路用光纤连接器相连接。

在本文中,我们描述了一个紧凑的模块化方案的组装和验证,利用光纤的阵列进行多色荧光检测DA单光电探测器6。光纤被耦合到单独的激光和被插入垂直于一个L形的流动通道以规则的空间偏移。的荧光收集纤维取向平行于激励区域,并连接到一个单独的PMT。因为液滴穿过在不同的时间的激光束,由光电倍增管记录的数据显示了一个时间偏移,允许用户向液滴由每个不同的激光束激发后发出的荧光区分。这个时间偏移消除了需要发射的光分离成使用一系列分色镜和带通滤波器的分离的光电倍增管。以验证检测器的效能,我们定量液滴种群包封不同颜色和浓度的染料的荧光。该系统的灵敏度进行了研究为单色荧光检测,并示出了以检测与浓度液滴向下至0.1nM,一个200×灵敏度曝光的能力ovement相比,在文献7日报道最近的基于光纤的方法为。

Protocol

1. SU8主制造设计使用设计软件三层制造微流体结构并通过在电路板胶片供应商与10微米的分辨率打印的设计。装置设计的细节都在所附的参考6给出的信道的几何形状在图1所示的层应包括对准标记,以帮助从每个制造层8并置的功能。 放置在旋涂机的预清洗3英寸直径的硅晶片,并开启真空将其固定到卡盘。申请1毫升SU8-3050在晶片和自旋的中心为20秒在500rp…

Representative Results

一个PDMS设备,其允许光纤的插入的制造需要多步光刻过程,以创建不同的高度( 图1)的信道。首先,SU-8的80微米高的层被旋涂到硅晶片并使用掩模来创建流体处理几何图案。接着,附加40微米层的SU-8的旋涂在晶片上,并使用第二掩模来创建功能,将形成120微米高的激光光纤插入通道图案化。最后,100微米以上的SU-8旋涂在晶片上,并形成图案,得到220微米高?…

Discussion

光纤检测需要的光纤相对于流体通道的取向。因为我们的器件利用具有多层光刻制造导槽,以相对于彼此的掩模放置是非常重要的。如果光纤导槽太靠近流体通道,对于流体泄漏的可能性;如果导向通道位于太远或错位,由检测纤维收集的荧光信号可以显著减少。适当的对准可以通过设计对准标记,例如同心圆入口罩相片图案形成过程中共同定位来辅助。此外,光纤的手动插入装置是具有打破装置…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This work was supported by DARPA grant number 84389.01.44908, an NSF CAREER award (DBI-1253293), an NIH exploratory/developmental research grant (CA195709), and NIH New Innovator Awards (HD080351, DP2-AR068129-01), and a New Directions grant from the UCSF resource allocation program.

Materials

Photomasks CadArt Servcies
3" silicon wafers, P type, virgin test grade University Wafers 447
SU-8 3035 Microchem Y311074
SU-8 2050 Microchem Y111072
Sylgard 184 silicone elastomer kit Krayden 4019862
1 ml syringes BD 309628
10 ml syringes BD 309604
27 gaugue needles BD 305109
PE 2 polyethylene tubing Scientific Commodities, Inc. B31695-PE/2
Novec 7500 Fisher Scientific 98-0212-2928-5 Commonly knowns as HFE 7500
Ionic Krytox Surfactant Synthesis instructions in ref #10
Dextran- conjugated cascade blue dye Life Technologies D-1976
Fluorescein sodium salt Sigma 28803
Quad bandpass filter Semrock FF01-446/510/581/703-25
PMT Thorlabs PMM02
Fiber port Thorlabs PAFA-X-4-A
lens tube Thorlabs SM1L05
Patch cable with 200 um core / 225 um cladding optical fiber with one stripped end and one FC/PC connector Thorlabs Custom
Patch cable with 105 um core / 125 um cladding optical fiber with one stripped end and one FC/PC connector Thorlabs Custom
125 um fiber stripping tool Thorlabs T08S13
225 um fiber stripping tool Thorlabs T10S13
laser fiber adapter OptoEngine FC/PC Adapter
405 nm CW laser at 50 mW OptoEngine MDL-III-405 Distributor for CNI lasers
473 nm CW laser at 50 mW OptoEngine MLL-FN-473-50

Riferimenti

  1. Teh, S. Y., Lin, R., Hung, L. H., Lee, A. P. Droplet microfluidics. Lab Chip. 8, 198-220 (2008).
  2. Mazutis, L., Gilbert, J., Ung, W. L., Weitz, D. A., Griffiths, A. D., Heyman, J. A. Single-cell analysis and sorting using droplet-based microfluidics. Nat Protocol. 8 (5), 870-891 (2013).
  3. Hindson, B. J., Ness, K. D. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem. 83, 8604-8610 (2011).
  4. Agresti, J. J., Antipov, E. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc Nat Acad Sci USA. 107 (14), 4004 (2010).
  5. Eastburn, D. J., Sciambi, A., Abate, A. R. Picoinjection Enables Digital Detection of RNA with Droplet RT-PCR. PLOS ONE. 8 (4), (2013).
  6. Cole, R. H., de Lange, N., Gartner, Z. J., Abate, A. R. Compact and modular multicolour fluorescence detector for droplet microfluidics. Lab Chip. 15 (13), 2754-2758 (2015).
  7. Guo, F., Lapsley, M. I. A droplet-based, optofluidic device for high-throughput, quantitative bioanalysis. Anal Chem. 84, 10745-10749 (2012).
  8. . Lithography Available from: https://www.memsnet.org/mems/processes/lithography.html (2015)
  9. DeJournette, C. J., Kim, J., Medlen, H., Li, X., Vincent, L. J., Easley, C. J. Creating Biocompatible Oil-Water Interfaces without Synthesis: Direct Interactions between Primary Amines and Carboxylated Perfluorocarbon Surfactants. Anal Chem. 85 (21), (2013).
  10. Fallah-Araghi, A., Baret, J. C., Ryckelynck, M., Griffiths, A. D. A completely in vitro ultrahigh-throughput droplet-based microfluidic screening system for protein engineering and directed evolution. Lab Chip. 12, 882 (2012).
  11. Eastburn, D. J., Sciambi, A., Abate, A. R. Ultrahigh-Throughput Mammalian Single-Cell Reverse-Transcriptase Polymerase Chain Reaction in Microfluidic Drops. Anal Chem. 85 (16), 8016-8021 (2013).
  12. Martini, J., Recht, M. I., Huck, M., Bern, M. W., Johnson, N. M., Kiesel, P. Time encoded multicolor fluorescence detection in a microfluidic flow cytometer. Lab Chip. 12 (23), 5057-5062 (2012).
  13. Bliss, C. L., McMullin, J. N., Backhouse, C. J. Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis. Lab Chip. 7 (10), 1280-1287 (2007).
  14. Martinez Vazquez, R., Osellame, R. Optical sensing in microfluidic lab-on-a-chip by femtosecond-laser-written waveguides. Anal Bioanal Chem. 393, 1209-1216 (2009).
  15. Vishnubhatla, K. C., Bellini, N., Ramponi, R., Cerullo, G., Osellame, R. Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching. Opt Express. 17 (10), 8685-8695 (2009).
check_url/it/54010?article_type=t

Play Video

Citazione di questo articolo
Cole, R. H., Gartner, Z. J., Abate, A. R. Multicolor Fluorescence Detection for Droplet Microfluidics Using Optical Fibers. J. Vis. Exp. (111), e54010, doi:10.3791/54010 (2016).

View Video