Summary

Calcification vasculaire des cellules musculaires lisses et imagerie de Aortic calcification et Inflammation

Published: May 31, 2016
doi:

Summary

Vascular calcification is an important predictor of and contributor to human cardiovascular disease. This protocol describes methods for inducing calcification of cultured primary vascular smooth muscle cells and for quantifying calcification and macrophage burden in animal aortas using near-infrared fluorescence imaging.

Abstract

Cardiovascular disease is the leading cause of morbidity and mortality in the world. Atherosclerotic plaques, consisting of lipid-laden macrophages and calcification, develop in the coronary arteries, aortic valve, aorta, and peripheral conduit arteries and are the hallmark of cardiovascular disease. In humans, imaging with computed tomography allows for the quantification of vascular calcification; the presence of vascular calcification is a strong predictor of future cardiovascular events. Development of novel therapies in cardiovascular disease relies critically on improving our understanding of the underlying molecular mechanisms of atherosclerosis. Advancing our knowledge of atherosclerotic mechanisms relies on murine and cell-based models. Here, a method for imaging aortic calcification and macrophage infiltration using two spectrally distinct near-infrared fluorescent imaging probes is detailed. Near-infrared fluorescent imaging allows for the ex vivo quantification of calcification and macrophage accumulation in the entire aorta and can be used to further our understanding of the mechanistic relationship between inflammation and calcification in atherosclerosis. Additionally, a method for isolating and culturing animal aortic vascular smooth muscle cells and a protocol for inducing calcification in cultured smooth muscle cells from either murine aortas or from human coronary arteries is described. This in vitro method of modeling vascular calcification can be used to identify and characterize the signaling pathways likely important for the development of vascular disease, in the hopes of discovering novel targets for therapy.

Introduction

Les maladies cardiovasculaires sont la principale cause de morbidité et de mortalité dans le monde, y compris les États-Unis où elle représente plus de 780.000 décès par an. 1 calcification de l' artère coronaire et la calcification aortique sont les caractéristiques de la maladie athéroscléreuse et servent de solides prédicteurs d'événements cardiovasculaires. 2- 4 Deux principaux types de calcifications vasculaires ont été rapportés chez les adultes: calcification intimale, associée à l' athérosclérose, et médiale (également connu sous le nom Mönckeberg) calcification, associée à une maladie rénale chronique et le diabète 5 intimale calcification se produit dans le cadre de l' accumulation de lipides et de macrophage. infiltration dans la paroi du vaisseau. 5,6 Medial calcification murale se produit indépendamment de l' intima calcification, se localise dans les fibres d' élastine ou des cellules musculaires lisses, et n'est pas associé à un dépôt de lipides ou de l' infiltration des macrophages. 5,7,8 études sur les mécanismes moléculaires de lacalcification vasculaire se sont appuyés sur des systèmes modèles cellulaires et animaux. Modèles de rongeurs pour les maladies atherocalcific comprennent des souris déficientes en soit apolipoprotéine E (ApoE) 9,10 ou récepteur de lipoprotéines de basse densité (LDLR) 11 nourris avec un régime alimentaire riche en matières grasses, alors que les modèles pour la calcification médiale comprennent des souris avec la protéine matricielle Gla (MGP) déficit 12 ou rats qui développent urémie soit par néphrectomie totale près (le modèle de néphrectomie 5 / 6e) ou par exposition à un régime riche en adénine. 13

Ici, le modèle de la calcification vasculaire médiale associée à un déficit MGP se concentre sur. MGP est une protéine extracellulaire qui inhibe la calcification artérielle. 12 mutations du gène MGP ont été identifiés dans le syndrome Keutel, une maladie humaine rare caractérisée par diffuse calcification du cartilage en plus brachytéléphalangie, la perte auditive, et une sténose pulmonaire périphérique. 14-18 Bien que non souvent observé, 19calcification concentrique de plusieurs artères a été décrite dans le syndrome de Keutel. 20 polymorphismes communs dans le gène MGP humaine sont associés à un risque accru de calcification des artères coronaires, 21-23 tandis que les taux circulants plus élevés de MGP non carboxyle, biologiquement inactif prédire la mortalité cardiovasculaire. 24 Contrairement aux humains avec le syndrome de Keutel, les souris déficientes MGP développent un phénotype vasculaire sévère constitué de calcification artérielle spontanée généralisée à partir de deux semaines d'âge et de mourir 6-8 semaines après la naissance en raison de la rupture de l' aorte 12.

Contrairement à ApoE – / – et LDLR – / – souris nourris avec un régime riche en graisses, qui développent la calcification vasculaire intimale à l' inflammation induite par macrophage associée, MGP – / -. Souris développent une calcification vasculaire médial en l'absence d'infiltration macrophagique 11,25 Bien ces résultats suggèrent différents stimuli sous-jacents pour intimAl et une calcification médiane, il y a chevauchement des mécanismes de signalisation qui interviennent dans les deux formes de calcification. 26 De multiples voies de signalisation ont été identifiées qui contribuent à la calcification vasculaire , y compris des médiateurs inflammatoires tels que le facteur de nécrose tumorale-α et d' IL-1 et des facteurs pro-osteogenes tel que Notch, Wnt et une protéine morphogénétique osseuse (BMP) de signalisation 27,28 . Ces voies de signalisation augmentent l' expression des facteurs de transcription liés à runt-facteur de transcription 2 (Runx2) et osterix qui , à son tour , augmentent l' expression des protéines osseuses ( . par exemple, l' ostéocalcine, sclerostin, et la phosphatase alcaline) dans la vasculature que la médiation calcification 28-30 Nous et d' autres ont démontré que la calcification vasculaire observée dans ApoE – / – et LDLR – / – souris nourris avec un régime riche en graisses et spontanée calcification vasculaire observée dans MGP – / – souris dépendent tous de la protéine morphogénétique osseuse (BMP) signaling, et il est cette voie qui se concentre sur ici. 11,25,31 PGB sont des facteurs ostéogéniques puissants nécessaires à la formation des os et sont connus pour présenter une expression accrue dans l' athérosclérose humaine. 32-34 Des études in vitro ont mis en cause la signalisation BMP dans la régulation l'expression de facteurs ostéogéniques tels que Runx2. 35-37 surexpression du ligand BMP, BMP-2, accélère le développement de la calcification vasculaire chez les souris déficientes en ApoE nourris avec un régime riche en graisses. 38 en outre, l'utilisation de BMP inhibiteurs spécifiques tels signalisation comme LDN-193189 (LDN) 39,40 et / ou Alk3-Fc empêche le développement de la calcification vasculaire dans les deux LDLR – / – souris nourris avec un régime riche en matières grasses et des souris déficientes MGP 11,25.

Les cellules musculaires lisses vasculaires (CMLV) ont un rôle essentiel dans le développement de la calcification vasculaire. 30,41,42 La calcification vasculaire médial qui se développe dans la MGP-souris déficientes est caractérisée par une transdifférenciation des CMLV à un phénotype ostéogénique. Perte de résultats MGP en diminution de l'expression de marqueurs CMLV y compris myocardin et alpha actine musculaire lisse, avec une augmentation concomitante des marqueurs ostéogéniques tels que Runx2 et ostéopontine. Ces changements coïncident avec le développement de la calcification vasculaire. 25,43,44

La calcification de l' aorte et de l' inflammation chez les souris sont généralement évaluées en utilisant des techniques histochimiques comme l' activité de la phosphatase alcaline pour la calcification précoce et l' activité ostéogénique de von Kossa et Alizarine coloration rouge pour la fin de la calcification, et des protocoles d' immunohistochimie qui ciblent les marqueurs protéiques macrophage (par ex., CD68, F4 / 80, Mac-1, Mac-2, Mac-3). 9,45 Toutefois, ces techniques d'imagerie standard nécessite le traitement des tissus aortiques dans des sections transversales, ce qui prend du temps et imparfait dû à un biais d'échantillonnage, et sont limitées dans leur capacité à quantifier l'inflammation et calcifications dans l'ensemble de l'aorte. Ce protocole décrit un procédé pour visualiser et de quantifier la calcification artérielle aortique et moyennes ensemble et l' accumulation de macrophages en utilisant fluorescent dans le proche infrarouge (NIR) d'imagerie moléculaire ex vivo. L' invention concerne également un procédé pour la récolte et la mise en culture CMLV aortiques primaires de souris et l' induction de la calcification de murin et CMLV humains in vitro afin de déterminer les mécanismes moléculaires sous – jacents vasculaire calcification. Ces techniques permettent l'investigateur à la fois in vivo et in vitro , des méthodes d'étude des maladies atherocalcific.

Protocol

Toutes les études avec des souris ont été effectuées en stricte conformité avec les recommandations du Guide pour le soin et l'utilisation des animaux de laboratoire des National Institutes of Health. Logement et toutes les procédures impliquant des souris décrites dans cette étude ont été approuvés par l'Institutional Animal Care et l'utilisation des comités de l'Hôpital général du Massachusetts (Sous-comité sur la recherche de protection des animaux). Toutes les procédures ont été r?…

Representative Results

Calcification Aortic dans MGP – / – et souris de type sauvage a été mesurée en utilisant l' imagerie de fluorescence NIR de calcium. Aucun signal NIR de calcium a été détectée dans les aortes des souris de type sauvage, ce qui indique l'absence de calcification (figure 2). Un signal NIR de calcium solide a été détectée dans les aortes de MGP souris déficientes, ce qui est compatible avec la calcification vasculaire avancé. Des sections de …

Discussion

Calcification artérielle est un facteur de risque important pour les maladies cardio – vasculaires chez l' homme et peut contribuer directement à la pathogenèse des événements cardiovasculaires. 1,5,52 intimale dépôt de calcium dans les calottes fibreuses minces de maladie athéroscléreuse a été proposé d'augmenter le stress biomécanique local et contribuer à rupture de la plaque. 53,54 impacts de calcification médiale sur les résultats cliniques en augmentant la rigidité ar…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This work was supported by the Sarnoff Cardiovascular Research Foundation (MFB and TET), the Howard Hughes Medical Institute (TM), the Ladue Memorial Fellowship Award from Harvard Medical School (DKR), the START-Program of the Faculty of Medicine at RWTH Aachen (MD), the German Research Foundation (DE 1685/1-1, MD), the National Eye Institute (R01EY022746, ESB), the Leducq Foundation (Multidisciplinary Program to Elucidate the Role of Bone Morphogenetic Protein Signaling in the Pathogenesis of Pulmonary and Systemic Vascular Diseases, PBY, KDB, and DBB), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01AR057374, PBY), the National Institute of Diabetes and Digestive and Kidney Diseases (R01DK082971, KDB and DBB), the American Heart Association Fellow-to-Faculty Award #11FTF7290032 (RM), and the National Heart, Lung, and Blood Institute (R01HL114805 and R01HL109506, EA; K08HL111210, RM).

Materials

15 ml conical tube Falcon 352096
30 G needle BD 305106
Alpha smooth muscle actin antibody Sigma SAB2500963
Chamber slide Nunc Lab-Tek 154461
Collagenase, Type 2  Worthington LS004176
Dexamethasone Sigma D4902
Dulbecco's Modified Eagle Medium Life Technologies 11965-084
Dulbecco's Phosphate Buffered Saline, no calcium Gibco 14190-144
Elastase Sigma E1250
Fetal bovine serum Gibco 16000-044
Forceps, fine point Roboz RS-4972
Forceps, full curve serrated Roboz RS-5138
Formalin (10%) Electron Microscopy Sciences 15740
Hank's Balanced Salt Solution Gibco 14025-092
Human coronary artery smooth muscle cells PromoCell C-12511
Insulin syringe with needle Terumo SS30M2913
L-ascorbic acid Sigma A-7506
Micro-dissecting spring scissors (13mm) Roboz RS-5676
Micro-dissecting spring scissors (3mm) Roboz RS-5610
NIR, cathepsin (ProSense-750EX) Perkin Elmer NEV10001EX
NIR, osteogenic (OsteoSense-680EX) Perkin Elmer NEV10020EX
Normal Saline Hospira 0409-4888-10
Nuclear fast red Sigma-Aldrich N3020
Odyssey Imaging System Li-Cor Odyssey 3.0
Penicillin/Streptomycin Corning 30-001-CI
Silver nitrate (5%) Ricca Chemical Company 6828-16
Sodium phosphate dibasic heptahydrate Sigma-Aldrich S-9390
Sodium thiosulfate Sigma S-1648
ß-glycerophosphate disodium salt hydrate Sigma G9422
Tissue culture flask, 25 cm2 Falcon 353108
Tissue culture plate (35mm x 10mm) Falcon 353001
Tissue culture plate, six-well Falcon 353046
Trypsin Corning 25-053-CI
Tube rodent holder Kent Scientific RSTR551
Vacuum-driven filtration system Millipore SCGP00525

Riferimenti

  1. Go, A. S., et al. Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation. 129 (3), e28-e292 (2014).
  2. Wilson, P. W., et al. Abdominal aortic calcific deposits are an important predictor of vascular morbidity and mortality. Circulation. 103 (11), 1529-1534 (2001).
  3. Budoff, M. J., et al. Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association on Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Circulation. 114 (16), 1761-1791 (2006).
  4. Greenland, P., LaBree, L., Azen, S. P., Doherty, T. M., Detrano, R. C. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. Jama. 291 (2), 210-215 (2004).
  5. Otsuka, F., Sakakura, K., Yahagi, K., Joner, M., Virmani, R. Has our understanding of calcification in human coronary atherosclerosis progressed?. Arterioscler Thromb Vasc Biol. 34 (4), 724-736 (2014).
  6. Virmani, R., Burke, A. P., Farb, A., Kolodgie, F. D. Pathology of the vulnerable plaque. J Am Coll Cardiol. 47 (8 Suppl), C13-C18 (2006).
  7. Amann, K. Media calcification and intima calcification are distinct entities in chronic kidney disease. Clin J Am Soc Nephrol. 3 (6), 1599-1605 (2008).
  8. Aikawa, E., et al. Arterial and aortic valve calcification abolished by elastolytic cathepsin S deficiency in chronic renal disease. Circulation. 119 (13), 1785-1794 (2009).
  9. Aikawa, E., et al. Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation. 116 (24), 2841-2850 (2007).
  10. Qiao, J. H., et al. Pathology of atheromatous lesions in inbred and genetically engineered mice. Genetic determination of arterial calcification. Arterioscler Thromb. 14 (9), 1480-1497 (1994).
  11. Derwall, M., et al. Inhibition of bone morphogenetic protein signaling reduces vascular calcification and atherosclerosis. Arterioscler Thromb Vasc Biol. 32 (3), 613-622 (2012).
  12. Luo, G., et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature. 386 (6620), 78-81 (1997).
  13. Shobeiri, N., Adams, M. A., Holden, R. M. Vascular calcification in animal models of CKD: A review. Am J Nephrol. 31 (6), 471-481 (2010).
  14. Keutel, J., Jorgensen, G., Gabriel, P. [A new autosomal-recessive hereditary syndrome. Multiple peripheral pulmonary stenosis, brachytelephalangia, inner-ear deafness, ossification or calcification of cartilages]. Dtsch Med Wochenschr. 96 (43), 1676-1681 (1971).
  15. Munroe, P. B., et al. Mutations in the gene encoding the human matrix Gla protein cause Keutel syndrome. Nat Genet. 21 (1), 142-144 (1999).
  16. Cormode, E. J., Dawson, M., Lowry, R. B. Keutel syndrome: clinical report and literature review. Am J Med Genet. 24 (2), 289-294 (1986).
  17. Fryns, J. P., van Fleteren, A., Mattelaer, P., van den Berghe, H. Calcification of cartilages, brachytelephalangy and peripheral pulmonary stenosis. Confirmation of the Keutel syndrome. Eur J Pediatr. 142 (3), 201-203 (1984).
  18. Ozdemir, N., et al. Tracheobronchial calcification associated with Keutel syndrome. Turk J Pediatr. 48 (4), 357-361 (2006).
  19. Cranenburg, E. C., et al. Circulating matrix gamma-carboxyglutamate protein (MGP) species are refractory to vitamin K treatment in a new case of Keutel syndrome. J Thromb Haemost. 9 (6), 1225-1235 (2011).
  20. Meier, M., Weng, L. P., Alexandrakis, E., Ruschoff, J., Goeckenjan, G. Tracheobronchial stenosis in Keutel syndrome. Eur Respir J. 17 (3), 566-569 (2001).
  21. Wang, Y., et al. Common genetic variants of MGP are associated with calcification on the arterial wall but not with calcification present in the atherosclerotic plaques. Circ Cardiovasc Genet. 6 (3), 271-278 (2013).
  22. Cassidy-Bushrow, A. E., et al. Matrix gla protein gene polymorphism is associated with increased coronary artery calcification progression. Arterioscler Thromb Vasc Biol. 33 (3), 645-651 (2013).
  23. Crosier, M. D., et al. Matrix Gla protein polymorphisms are associated with coronary artery calcification in men. J Nutr Sci Vitaminol (Tokyo). 55 (1), 59-65 (2009).
  24. Liu, Y. P., et al. Inactive matrix Gla protein is causally related to adverse health outcomes: a Mendelian randomization study in a Flemish population. Hypertension. 65 (2), 463-470 (2015).
  25. Malhotra, R., et al. Inhibition of bone morphogenetic protein signal transduction prevents the medial vascular calcification associated with matrix Gla protein deficiency. PLoS One. 10 (1), e0117098 (2015).
  26. Demer, L. L., Tintut, Y. Inflammatory, metabolic, and genetic mechanisms of vascular calcification. Arterioscler Thromb Vasc Biol. 34 (4), 715-723 (2014).
  27. Rusanescu, G., Weissleder, R., Aikawa, E. Notch signaling in cardiovascular disease and calcification. Curr Cardiol Rev. 4 (3), 148-156 (2008).
  28. Leopold, J. A. Vascular calcification: Mechanisms of vascular smooth muscle cell calcification. Trends Cardiovasc Med. 25 (4), 267-274 (2015).
  29. Bostrom, K. I., Rajamannan, N. M., Towler, D. A. The regulation of valvular and vascular sclerosis by osteogenic morphogens. Circ Res. 109 (5), 564-577 (2011).
  30. Hruska, K. A., Mathew, S., Saab, G. Bone morphogenetic proteins in vascular calcification. Circ Res. 97 (2), 105-114 (2005).
  31. Yao, Y., et al. Inhibition of bone morphogenetic proteins protects against atherosclerosis and vascular calcification. Circ Res. 107 (4), 485-494 (2010).
  32. Bostrom, K., et al. Bone morphogenetic protein expression in human atherosclerotic lesions. J Clin Invest. 91 (4), 1800-1809 (1993).
  33. Bragdon, B., et al. Bone morphogenetic proteins: a critical review. Cell Signal. 23 (4), 609-620 (2011).
  34. Cai, J., Pardali, E., Sanchez-Duffhues, G., ten Dijke, P. BMP signaling in vascular diseases. FEBS Lett. 586 (14), 1993-2002 (2012).
  35. Lee, K. S., et al. Runx2 is a common target of transforming growth factor beta1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol. 20 (23), 8783-8792 (2000).
  36. Matsubara, T., et al. BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation. J Biol Chem. 283 (43), 29119-29125 (2008).
  37. Li, X., Yang, H. Y., Giachelli, C. M. BMP-2 promotes phosphate uptake, phenotypic modulation, and calcification of human vascular smooth muscle cells. Atherosclerosis. 199 (2), 271-277 (2008).
  38. Nakagawa, Y., et al. Paracrine osteogenic signals via bone morphogenetic protein-2 accelerate the atherosclerotic intimal calcification in vivo. Arterioscler. Thromb. Vasc. Biol. 30 (10), 1908-1915 (2010).
  39. Cuny, G. D., et al. Structure-activity relationship study of bone morphogenetic protein (BMP) signaling inhibitors. Bioorg Med Chem Lett. 18 (15), 4388-4392 (2008).
  40. Yu, P. B., et al. BMP type I receptor inhibition reduces heterotopic ossification. Nat Med. 14 (12), 1363-1369 (2008).
  41. Schurgers, L. J., Uitto, J., Reutelingsperger, C. P. Vitamin K-dependent carboxylation of matrix Gla-protein: a crucial switch to control ectopic mineralization. Trends Mol Med. 19 (4), 217-226 (2013).
  42. Speer, M. Y., et al. Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries. Circ Res. 104 (6), 733-741 (2009).
  43. Speer, M. Y., Li, X., Hiremath, P. G., Giachelli, C. M. Runx2/Cbfa1 but not loss of myocardin, is required for smooth muscle cell lineage reprogramming toward osteochondrogenesis. J Cell Biochem. 110 (4), 935-947 (2010).
  44. Steitz, S. A., et al. Smooth muscle cell phenotypic transition associated with calcification: upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circ Res. 89 (12), 1147-1154 (2001).
  45. Inoue, T., Plieth, D., Venkov, C. D., Xu, C., Neilson, E. G. Antibodies against macrophages that overlap in specificity with fibroblasts. Kidney Int. 67 (6), 2488-2493 (2005).
  46. Zaheer, A., et al. In vivo near-infrared fluorescence imaging of osteoblastic activity. Nat Biotechnol. 19 (12), 1148-1154 (2001).
  47. Aikawa, E., et al. Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation. 115 (3), 377-386 (2007).
  48. Lee, K. J., Czech, L., Waypa, G. B., Farrow, K. N. Isolation of pulmonary artery smooth muscle cells from neonatal mice. J Vis Exp. (80), e50889 (2013).
  49. Tang, Y., Herr, G., Johnson, W., Resnik, E., Aho, J. Induction and analysis of epithelial to mesenchymal transition. J Vis Exp. (78), (2013).
  50. Puchtler, H., Meloan, S. N. Demonstration of phosphates in calcium deposits: a modification of von Kossa’s reaction. Histochemistry. 56 (3-4), 177-185 (1978).
  51. Krahn, K. N., Bouten, C. V., van Tuijl, S., van Zandvoort, M. A., Merkx, M. Fluorescently labeled collagen binding proteins allow specific visualization of collagen in tissues and live cell culture. Anal Biochem. 350 (2), 177-185 (2006).
  52. Johnson, R. C., Leopold, J. A., Loscalzo, J. Vascular calcification: pathobiological mechanisms and clinical implications. Circ Res. 99 (10), 1044-1059 (2006).
  53. Vengrenyuk, Y., et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci U S A. 103 (40), 14678-14683 (2006).
  54. Maldonado, N., et al. A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability: potential implications for plaque rupture. Am J Physiol Heart Circ Physiol. 303 (5), H619-H628 (2012).
  55. Toussaint, N. D., Kerr, P. G. Vascular calcification and arterial stiffness in chronic kidney disease: implications and management. Nephrology (Carlton). 12 (5), 500-509 (2007).
  56. Vines, D. C., Green, D. E., Kudo, G., Keller, H. Evaluation of mouse tail-vein injections both qualitatively and quantitatively on small-animal PET tail scans. J Nucl Med Technol. 39 (4), 264-270 (2011).
  57. Smith, J. G., et al. Association of low-density lipoprotein cholesterol-related genetic variants with aortic valve calcium and incident aortic stenosis. Jama. 312 (17), 1764-1771 (2014).
  58. Thanassoulis, G., et al. Genetic associations with valvular calcification and aortic stenosis. N Engl J Med. 368 (6), 503-512 (2013).
  59. Otto, C. M., Kuusisto, J., Reichenbach, D. D., Gown, A. M., O’Brien, K. D. Characterization of the early lesion of ‘degenerative’ valvular aortic stenosis. Histological and immunohistochemical studies. Circulation. 90 (2), 844-853 (1994).
  60. New, S. E., Aikawa, E. Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ Res. 108 (11), 1381-1391 (2011).
  61. Jaffer, F. A., Libby, P., Weissleder, R. Optical and multimodality molecular imaging: insights into atherosclerosis. Arterioscler Thromb Vasc Biol. 29 (7), 1017-1024 (2009).
  62. Stern, P. H. Antiresorptive agents and osteoclast apoptosis. J Cell Biochem. 101 (5), 1087-1096 (2007).
  63. Ray, J. L., Leach, R., Herbert, J. M., Benson, M. Isolation of vascular smooth muscle cells from a single murine aorta. Methods Cell Sci. 23 (4), 185-188 (2001).
  64. Chamley-Campbell, J., Campbell, G. R., Ross, R. The smooth muscle cell in culture. Physiol Rev. 59 (1), 1-61 (1979).
  65. Trion, A., Schutte-Bart, C., Bax, W. H., Jukema, J. W., van der Laarse, A. Modulation of calcification of vascular smooth muscle cells in culture by calcium antagonists, statins, and their combination. Mol Cell Biochem. 308 (1-2), 25-33 (2008).
  66. Mori, K., Shioi, A., Jono, S., Nishizawa, Y., Morii, H. Dexamethasone enhances In vitro vascular calcification by promoting osteoblastic differentiation of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 19 (9), 2112-2118 (1999).
  67. Thyberg, J. Differentiated properties and proliferation of arterial smooth muscle cells in culture. Int Rev Cytol. 169, 183-265 (1996).
  68. Dinardo, C. L., et al. Vascular smooth muscle cells exhibit a progressive loss of rigidity with serial culture passaging. Biorheology. 49 (5-6), 365-373 (2012).
  69. Metz, R. P., Patterson, J. L., Wilson, E. Vascular smooth muscle cells: isolation, culture, and characterization. Methods Mol Biol. 843, 169-176 (2012).
  70. Proudfoot, D., Shanahan, C. Human vascular smooth muscle cell culture. Methods Mol Biol. 806, 251-263 (2012).
  71. Hruska, K. A. Vascular smooth muscle cells in the pathogenesis of vascular calcification. Circ Res. 104 (6), 710-711 (2009).
check_url/it/54017?article_type=t

Play Video

Citazione di questo articolo
O’Rourke, C., Shelton, G., Hutcheson, J. D., Burke, M. F., Martyn, T., Thayer, T. E., Shakartzi, H. R., Buswell, M. D., Tainsh, R. E., Yu, B., Bagchi, A., Rhee, D. K., Wu, C., Derwall, M., Buys, E. S., Yu, P. B., Bloch, K. D., Aikawa, E., Bloch, D. B., Malhotra, R. Calcification of Vascular Smooth Muscle Cells and Imaging of Aortic Calcification and Inflammation. J. Vis. Exp. (111), e54017, doi:10.3791/54017 (2016).

View Video