Summary

在C2C12肌细胞造型强直性肌营养不良1

Published: July 29, 2016
doi:

Summary

在这个协议中,我们提出在建立强直性肌营养不良1成肌细胞模型,包括优化C2C12细胞维持,基因转染/转导,和肌细胞分化的步骤。

Abstract

强直性肌营养不良1(DM1)是肌营养不良的一种常见形式。尽管一些动物模型已经建立了DM1,因为它们提供用于研究细胞和分子事件的有效的细胞替代成肌细胞模型仍然是重要的。虽然C2C12成肌细胞已被广泛用于研究肌形成,抗性基因转染或病毒转导,阻碍研究在C2C12细胞中。在这里,我们描述了一种优化的协议,包括日常维护,转染和转导过程的基因引入C2C12细胞和肌细胞分化的诱导。总的来说,这些程序使最佳的转染/转导效率,以及一致的分化的结果。在建立DM1成肌细胞模型将受益强直性肌营养不良的研究,以及其它肌肉疾病中描述的协议。

Introduction

强直性肌营养不良(DM)是一种常染色体显性疾病,影响多个系统,最显着的心脏和骨骼肌1。有此疾病,DM1和DM2的两个亚型。 DM1是比较常见的,并且具有更严重的表现比DM2 2。遗传突变底层DM1是位于3'非翻译区域的DM蛋白激酶基因(DMPK)3(UTR)的CUG三联体重复序列的扩张。在未受影响的个体的CUG重复次数变化从5到37相反,它增加了50多个,有时多达数千DM1患者4。其结果是,RNA结合蛋白,如的muscleblind样1(MBNL1),CUGBP和ELAV样家族1(Celf1),是misregulated。由于对扩大CUG重复封存,MBNL1失去其调节可变剪接5的能力。 Celf1,在另一方面,上调6,7。 Celf1的过度表达与肌肉相关的损失和虚弱,这是不归因于MBNL1功能丧失。动物模型模拟DM1相关改变,包括DMPK 3'-UTR CUG扩张,MBNL1的损失,和Celf1的过表达,已经确立。然而,在成肌细胞建模DM1提供了一个有效的替代,特别是对于解剖DM1相关的细胞和分子事件。

C2C12成肌细胞系最初从受伤的C3H小鼠肌肉中分离,并广泛用于研究肌分化8,9。 C2C12细胞快速增殖中的胎牛血清(FBS)的含介质和容易当FBS的耗尽经历分化。然而,使用这种成肌细胞分化模型提出了两个挑战:C2C12细胞往往是基因转染/病毒转导性;并在细胞处理和分化过程的细微变化可导致肌管形成显着的变化。

我们的实验室经常使用C2C12细胞作为交流ELL模型,并开发了有效地提供质粒转染,逆转录病毒转导和慢病毒转基因导入C2C12细胞系10协议。在视频中,我们展示了用于转染/转导C2C12细胞并保持在建立DM1成肌细胞分化模型的一致性进行了优化程序。

Protocol

1. C2C12细胞培养维持在生长培养基中100毫米板C2C12小鼠成肌细胞(Dulbecco改良的Eagle培养基(DMEM))补充有20%胎牛血清,100U / ml青霉素,100微克/ ml链霉素,和2mM L-谷氨酰胺。允许C2C12传代细胞变成约50 – 60%汇合。 弃去生长培养基和洗涤C2C12细胞用3ml室温磷酸盐缓冲盐水(PBS)。除去PBS中并加入500微升的0.25%胰蛋白酶-EDTA分离​​细胞。放置板在37℃,5%CO 2培养箱3 – 5分钟?…

Representative Results

C2C12细胞与GFP-CUG5或GFP-CUG200染。耐药性选择后,稳定集合建立,其可以通过GFP表达( 图1A)被可视化。在分化的成肌细胞肌管形成通过肌球蛋白重链的免疫染色10( 图1B)进行检测。肌管形成的定量表明,融合指数从35.4±4.1%下降到2.6±1.1%和肌管领域,从35.6±2.2%的GFP CUG200( 图1C)下降至2.7±0.8%由异常CUG扩张。的熔融指数?…

Discussion

C2C12细胞系已被用作一个模型来研究肌形成11-14。这些细胞保留了成纤维细胞样外观,在含有20%胎牛血清媒体快速增殖和在含有2%马血清15媒体容易区分。快速生长和分化是在成肌细胞模型有利的特性。在这里,我们演示了如何使用质粒,逆转录病毒和慢病毒载体引进的cDNA,3'-UTR,和shRNA进入C2C12细胞。转染/转导和分化维护一致性的关键点如下。

在每日?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

We thank Drs. Tom Cooper from the Baylor College of Medicine, Mani S. Mahadevan from the University of Wisconsin-Madison, and Didier Trono from the University of Geneva for reagents. This work is supported by a University of Houston startup fund (YL), American Heart Association grant (YL, 11SDG5260033), and the National Natural Science Foundation of China (XP, 81460047).

Materials

DMEM, high glucose Life Technologies 11965-084 for culture medium
Fetal Bovine Serum – Premium Atlanta Biologicals S11150 for culture medium
Penicillin-Streptomycin-Glutamine (100X) Life Technologies 10378-016 for culture medium
Insulin from bovine pancreas Sigma Aldrich I6634-100MG for differentiation medium
equine serum Atlanta Biologicals S12150 for differentiation medium
FuGENE HD Transfection Reagent Promega E2311  for transfection
G418 sulfate  Gold Biotechnology  G-418-10 for drug resistant selection
Puromycin dihydrochloride Sigma Aldrich sc-108071 for drug resistant selection
NuPAGE Novex 4-12% Bis-Tris Protein Gels, 1.0 mm, 15 well Life Technologies NP0323BOX for western blot
NuPAGE Transfer Buffer (20X) Life Technologies NP00061 for western blot
NuPAGE MES SDS Running Buffer (20X) Life Technologies NP0002 for western blot
Amersham Protran Supported 0.2 NC, 300mmx4m GE healthcare life science 10600015 for western blot
MF 20 Developmental Hybridoma Bank MF 20 primary Ab for immunostaining
Goat anti-Mouse IgG (H+L) Secondary Antibody, Texas Red-X conjugate Thermo Fisher Scientific T-862 secondary Ab for immunostaining
One step qRT-PCR MasterMix AnaSpec 05-QPRT-032X for qRT-PCR
TriPure Isolation Reagent Roche 11667165001 for RNA isolation
CUG-BP1 Antibody (3B1) santa cruz sc-20003 primary Ab western blot
Actin Antibody santa cruz sc-1615 goat polyclonal IgG for loading control
293T Ecopack Clontech 631507 cells for retrovirus preparation
pMSCV-puro Clontech 634401 empty retroviral vector for retrovirus preparation
pMSCV-Celf1Flag-puro house-constructed not available retroviral vector encoding Celf1Flag, used in retrovirus preparation
psPAX2 gift from Didier Trono not available for lentivirus preparation
pMD2.G gift from Didier Trono not available for lentivirus preparation
GFP-CUG5 gift from M.S. Mahadevan not available details in reference 10 
GFP- CUG200 gift from M.S. Mahadevan not available details in reference 10 
Triton X-100 Sigma Aldrich X100 for immunostaining
paraformaldehyde Sigma Aldrich P6148 for immunostaining
TWEEN 20 Sigma Aldrich P9416 for immunostaining
DAPI Sigma Aldrich D9542 for immunostaining

Riferimenti

  1. Harper, P. S. . Myotonic dystrophy. 3rd edn. , (2001).
  2. Timchenko, L. Molecular mechanisms of muscle atrophy in myotonic dystrophies. Int J Biochem Cell Biol. 45 (10), 2280-2287 (2013).
  3. Brook, J. D., et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell. 68 (4), 799-808 (1992).
  4. Chau, A., Kalsotra, A. Developmental insights into the pathology of and therapeutic strategies for DM1: Back to the basics. Dev Dyn. 244 (3), 377-390 (2015).
  5. Ho, T. H., et al. Muscleblind proteins regulate alternative splicing. EMBO J. 23 (15), 3103-3112 (2004).
  6. Kuyumcu-Martinez, N. M., Wang, G. S., Cooper, T. A. Increased steady-state levels of CUGBP1 in myotonic dystrophy 1 are due to PKC-mediated hyperphosphorylation. Mol Cell. 28 (1), 68-78 (2007).
  7. Kalsotra, A., et al. The Mef2 transcription network is disrupted in myotonic dystrophy heart tissue, dramatically altering miRNA and mRNA expression. Cell Rep. 6 (2), 336-345 (2014).
  8. Yaffe, D., Saxel, O. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature. 270 (5639), 725-727 (1977).
  9. Blau, H. M., Chiu, C. P., Webster, C. Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell. 32 (4), 1171-1180 (1983).
  10. Peng, X., et al. Celf1 regulates cell cycle and is partially responsible for defective myoblast differentiation in myotonic dystrophy RNA toxicity. Biochim Biophys Acta. 1852 (7), 1490-1497 (2015).
  11. Amack, J. D., Mahadevan, M. S. The myotonic dystrophy expanded CUG repeat tract is necessary but not sufficient to disrupt C2C12 myoblast differentiation. Hum Mol Genet. 10 (18), 1879-1887 (2001).
  12. Amack, J. D., Paguio, A. P., Mahadevan, M. S. Cis and trans effects of the myotonic dystrophy (DM) mutation in a cell culture model. Hum Mol Genet. 8 (11), 1975-1984 (1999).
  13. Bhagavati, S., Shafiq, S. A., Xu, W. (CTG)n repeats markedly inhibit differentiation of the C2C12 myoblast cell line: implications for congenital myotonic dystrophy. Biochim Biophys Acta. 1453 (2), 221-229 (1999).
  14. Amack, J. D., Mahadevan, M. S. Myogenic defects in myotonic dystrophy. Dev Biol. 265 (2), 294-301 (2004).
  15. Emerson, C. P., Sweeney, H. L. . Methods in muscle biology. 52, (1997).
  16. Ward, A. J., Rimer, M., Killian, J. M., Dowling, J. J., Cooper, T. A. CUGBP1 overexpression in mouse skeletal muscle reproduces features of myotonic dystrophy type 1. Hum Mol Genet. 19 (18), 3614-3622 (2010).
  17. Koshelev, M., Sarma, S., Price, R. E., Wehrens, X. H. T., Cooper, T. A. Heart-specific overexpression of CUGBP1 reproduces functional and molecular abnormalities of myotonic dystrophy type 1. Hum Mol Genet. 19 (6), 1066-1075 (2010).
check_url/it/54078?article_type=t

Play Video

Citazione di questo articolo
Liang, R., Dong, W., Shen, X., Peng, X., Aceves, A. G., Liu, Y. Modeling Myotonic Dystrophy 1 in C2C12 Myoblast Cells. J. Vis. Exp. (113), e54078, doi:10.3791/54078 (2016).

View Video