Summary

Misurazione del Tempo di sopravvivenza in<em> Brachionus</em> Rotiferi: Sincronizzazione di materni Condizioni

Published: July 22, 2016
doi:

Summary

Rotifers are microscopic zooplankton used as models in ecotoxicological and aging studies. Here we provide a protocol for powerful and reproducible measurement of survival time in Brachionus rotifers. Synchronization of culture conditions over several generations is of particular importance because maternal condition affects life history of offspring.

Abstract

Rotifers are microscopic cosmopolitan zooplankton used as models in ecotoxicological and aging studies due to their several advantages such as short lifespan, ease of culture, and parthenogenesis that enables clonal culture. However, caution is required when measuring their survival time as it is affected by maternal age and maternal feeding conditions. Here we provide a protocol for powerful and reproducible measurement of the survival time in Brachionus rotifers following a careful synchronization of culture conditions over several generations. Empirically, poor synchronization results in early mortality and a gradual decrease in survival rate, thus resulting in weak statistical power. Indeed, under such conditions, calorie restriction (CR) failed to significantly extend the lifespan of B. plicatilis although CR-induced longevity has been demonstrated with well-synchronized rotifer samples in past and present studies. This protocol is probably useful for other invertebrate models, including the fruitfly Drosophila melanogaster and the nematode Caenorhabditis elegans, because maternal age effects have also been reported in these species.

Introduction

Rotiferi sono microscopici cosmopolita zooplancton (<1 mm), che costituiscono il phylum Rotifera 1. Hanno un semplice piano corpo composto di circa 1.000 cellule somatiche, nonché un apparato ciliare ruota-come caratteristica denominata corona, che viene utilizzato per la locomozione e l'alimentazione. La maggior parte dei rotiferi appartengono a classi Monogononta o Bdelloidea, che contengono circa 1.600 e 500 specie, rispettivamente 2. Rotiferi Monogonont hanno generalmente entrambe le fasi riproduttivo sessuale e asessuale (partenogenesi ciclico), mentre rotiferi bdelloid si riproducono per partenogenesi obbligatoria 3. È così possibile ottenere individui rotifere geneticamente identici, che assicura un'elevata riproducibilità in esperimenti. Inoltre, essi hanno diversi altri vantaggi come organismi modello, come una vita breve, facilità di coltura, la disponibilità dei dati di sequenza genomica e trascrittomica 4-7, ed una posizione filogenetica unica distante da unarthropods e nematodi 8. Rotiferi sono quindi promettenti modelli di invertebrati in ecologico, tossicologico, e l'invecchiamento studi 9-12.

Il tempo di sopravvivenza in condizioni di esposizione a stress ambientale o sostanze chimiche è un parametro spesso misurato in questi campi di ricerca 13-19. Tuttavia, la cautela è necessaria quando si misura il tempo di sopravvivenza dei rotiferi, perché è suscettibile a condizioni ambientali delle loro madri. Vale a dire, nel monogonont Manjavacas rotifero Brachionus, prole femminile da madri di età hanno una durata più breve rispetto a quelli da giovani madri; tuttavia, la restrizione calorica materna (CR) compensa in parte gli effetti deleteri di avanzata età materna 20. In B. plicatilis, materna CR fornisce longevità prole, il tempo di sopravvivenza a lungo sotto la fame, ed elevata resistenza stress ossidativo associato con una maggiore espressione di enzimi antiossidanti 21,22. L'effetto dell'età maternaè stato osservato anche in rotiferi bdelloid 23. Pertanto, le condizioni di rotiferi sperimentali devono essere attentamente sincronizzate su più generazioni prima di misurazioni del tempo di sopravvivenza.

Qui forniamo un protocollo per la misurazione del tempo di sopravvivenza in rotiferi Brachionus dopo la sincronizzazione delle condizioni di coltura per diverse generazioni. Digiuno intermittente (IF), una variazione di CR dove rotiferi vengono alimentati periodicamente, è stato applicato per rivelare l'effetto della sincronizzazione a causa degli effetti ben noti di IF sulla longevità 22,24.

Protocol

1. Preparazione di media Nota: utilizzare metà diluita Brujewicz acqua di mare artificiale di salinità 16,5 ppt (PSU). Altri seawaters artificiali sono anche spesso utilizzate per cultura Brachionus rotiferi 25,26. Aggiungere 454 mM NaCl, 26 mM MgCl 2, 27 mM MgSO 4, 10 mM KCl, e 10 mM CaCl 2 al 4,5 l di acqua distillata (volume finale sarà di 5 L). In alternativa, utilizzare acqua di diluizione deionizzata invece di acqua dis…

Representative Results

La figura 1 mostra le curve rappresentative di sopravvivenza delle popolazioni mal sincronizzati (su due repliche). In questo esperimento, rotiferi erano o tutti i giorni della Fed [ad libitum (AL) gruppo] o ogni altro giorno (se il gruppo). La sopravvivenza mediana è stata di 13 e 18 giorni nel AL e se i gruppi, rispettivamente. Sebbene sia ben noto che se prolunga la vita della rotifero, questo esperimento non ha rilevato una differenza statisticamente …

Discussion

L'attuale protocollo descrive un metodo per misurare il tempo di sopravvivenza in rotiferi Brachionus. Il passo fondamentale è la sincronizzazione delle condizioni di rotiferi per diverse generazioni. Quando rotiferi sperimentali sono ben sincronizzati, una curva di sopravvivenza che tipo tipico è osservata con molto poco mortalità precoce come riportato in diversi studi precedenti 18,24,37,38. Le deviazioni standard del loro tempo di sopravvivenza di conseguenza diventano più piccoli rispett…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Siamo grati a George Jarvis, Martha Bock, e Bette Hecox-Lea, Marine Biological Laboratory, per il loro aiuto in riprese.

Materials

Sodium chloride Wako 190-13921
Magnesium chloride Wako 136-03995
Magnesium sulfate Wako 131-00427
Potassium chloride Wako 168-22111
Calcium chloride Wako 035-00455
Sodium bicarbonate Wako 199-05985
Sodium bromide Wako 190-01515
Membrane filter (0.45 µm pore size) Millipore HAWP04700
Culture plate, 6-well, non-treated Thomas Scientific 6902D01 Flat bottom
Culture plate, 48-well, non-treated Thomas Scientific 6902D07 Flat bottom
Tetraselmis, Living Carolina Biological Supply Company 152610
PRISM 6 GraphPad Software Version 6.0d

Riferimenti

  1. Wallace, R. L., Snell, T. W., Ricci, C., Nogrady, T. . Rotifera Vol.1: Biology, ecology and systematics. , (2006).
  2. Segers, H. . Annotated checklist of the rotifers (Phylum Rotifera), with notes on nomenclature, taxonomy and distribution. , (2007).
  3. Mark Welch, D. B., Meselson, M. Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science. 288 (5469), 1211-1215 (2000).
  4. Suga, K., Mark Welch, D., Tanaka, Y., Sakakura, Y., Hagiwara, A. Analysis of expressed sequence tags of the cyclically parthenogenetic rotifer Brachionus plicatilis. PLoS ONE. 2, e671 (2007).
  5. Denekamp, N. Y., et al. Discovering genes associated with dormancy in the monogonont rotifer Brachionus plicatilis. BMC Genomics. 10, 108 (2009).
  6. Lee, J. -. S., et al. Sequence analysis of genomic DNA (680 Mb) by GS-FLX-Titanium sequencer in the monogonont rotifer, Brachionus ibericus. Hydrobiologia. 662 (1), 65-75 (2010).
  7. Flot, J. -. F., et al. Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature. 500 (7463), 453-457 (2013).
  8. Dunn, C. W., et al. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature. 452 (7188), 745-749 (2008).
  9. Yoshinaga, T., Kaneko, G., Kinoshita, S., Tsukamoto, K., Watabe, S. The molecular mechanisms of life history alterations in a rotifer: a novel approach in population dynamics. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 136 (4), 715-722 (2003).
  10. Dahms, H. -. U., Hagiwara, A., Lee, J. -. S. Ecotoxicology, ecophysiology, and mechanistic studies with rotifers. Aquat. Toxicol. 101 (1), 1-12 (2011).
  11. Snell, T. W. Rotifers as models for the biology of aging. Int. Rev. Hydrobiol. 99 (1-2), 84-95 (2014).
  12. Snell, T. W., Johnston, R. K., Gribble, K. E., Mark Welch, D. B. Rotifers as experimental tools for investigating aging. Invertebr. Reprod. Dev. 59, 5-10 (2015).
  13. Kaneko, G., et al. Molecular characterization of Mn-superoxide dismutase and gene expression studies in dietary restricted Brachionus plicatilis rotifers. Hydrobiologia. 546, 117-123 (2005).
  14. Yoshinaga, T., et al. Insulin-like growth factor signaling pathway involved in regulating longevity of rotifers. Hydrobiologia. 546, 347-352 (2005).
  15. Ozaki, Y., Kaneko, G., Yanagawa, Y., Watabe, S. Calorie restriction in the rotifer Brachionus plicatilis enhances hypoxia tolerance in association with the increased mRNA levels of glycolytic enzymes. Hydrobiologia. 649 (1), 267-277 (2010).
  16. Kailasam, M., et al. Effects of calorie restriction on the expression of manganese superoxide dismutase and catalase under oxidative stress conditions in the rotifer Brachionus plicatilis. Fish. Sci. 77 (3), 403-409 (2011).
  17. Garcìa-Garcìa, G., Sarma, S., Núñez-Orti, A. R., Nandini, S. Effects of the mixture of two endocrine disruptors (ethinylestradiol and levonorgestrel) on selected ecological endpoints of Anuraeopsis fissa and Brachionus calyciflorus (Rotifera). Int. Rev. Hydrobiol. 99 (1-2), 166-172 (2014).
  18. Yang, J., Mu, Y., Dong, S., Jiang, Q., Yang, J. Changes in the expression of four heat shock proteins during the aging process in Brachionus calyciflorus (rotifera). Cell Stress Chaperones. 19 (1), 33-52 (2014).
  19. Han, J., et al. Sublethal gamma irradiation affects reproductive impairment and elevates antioxidant enzyme and DNA repair activities in the monogonont rotifer Brachionus koreanus. Aquat. Toxicol. 155, 101-109 (2014).
  20. Gribble, K. E., Jarvis, G., Bock, M., Mark Welch, D. B. Maternal caloric restriction partially rescues the deleterious effects of advanced maternal age on offspring. Aging Cell. 13 (4), 623-630 (2014).
  21. Yoshinaga, T., Hagiwara, A., Tsukamoto, K. Effect of periodical starvation on the survival of offspring in the rotifer Brachionus plicatilis. Fish. Sci. 67 (2), 373-374 (2001).
  22. Kaneko, G., et al. Calorie restriction-induced maternal longevity is transmitted to their daughters in a rotifer. Funct. Ecol. 25 (1), 209-216 (2011).
  23. Lansing, A. I. A transmissible, cumulative, and reversible factor in aging. J. Gerontol. 2 (3), 228-239 (1947).
  24. Yoshinaga, T., Hagiwara, A., Tsukamoto, K. Effect of periodical starvation on the life history of Brachionus plicatilis O. F. Müller (Rotifera): a possible strategy for population stability. J. Exp. Mar. Biol. Ecol. 253 (2), 253-260 (2000).
  25. Gribble, K. E., Kaido, O., Jarvis, G., Mark Welch, D. B. Patterns of intraspecific variability in the response to caloric restriction. Exp. Gerontol. 51, 28-37 (2014).
  26. Snell, T. W., Johnston, R. K. Glycerol extends lifespan of Brachionus manjavacas (Rotifera) and protects against stressors. Exp. Gerontol. 57, 47-56 (2014).
  27. Kim, H. -. J., Hagiwara, A. Effect of female aging on the morphology and hatchability of resting eggs in the rotifer Brachionus plicatilis Müller. Hydrobiologia. 662 (1), 107-111 (2011).
  28. Kim, H. -. J., et al. Light-dependent transcriptional events during resting egg hatching of the rotifer Brachionus manjavacas. Mar. Genomics. 20, 25-31 (2015).
  29. Gribble, K. E., Welch, D. B. M. Life-span extension by caloric restriction is determined by type and level of food reduction and by reproductive mode in Brachionus manjavacas (Rotifera). J. Gerontol. A Biol. Sci. Med. Sci. 68 (4), 349-358 (2013).
  30. Kaneko, G., Kinoshita, S., Yoshinaga, T., Tsukamoto, K., Watabe, S. Changes in expression patterns of stress protein genes during population growth of the rotifer Brachionus plicatilis. Fish. Sci. 68 (6), 1317-1323 (2002).
  31. Kim, H. J., Sawada, C., Hagiwara, A. Behavior and reproduction of the rotifer Brachionus plicatilis species complex under different light wavelengths and intensities. Int. Rev. Hydrobiol. 99 (1-2), 151-156 (2014).
  32. Yoshinaga, T., Hagiwara, A., Tsukamoto, K. Effect of conditioned media on the asexual reproduction of the monogonont rotifer Brachionus plicatilis O. F. Müller. Hydrobiologia. 412, 103-110 (1999).
  33. Ohmori, F., Kaneko, G., Saito, T., Watabe, S. A novel growth-promoting protein in the conditioned media from the rotifer Brachionus plicatilis at an early exponential growth phase. Hydrobiologia. 667 (1), 101-117 (2011).
  34. Collet, D. . Modelling Survival Data in Medical Research. , 151-193 (1993).
  35. Bouliotis, G., Billingham, L. Crossing survival curves: alternatives to the log-rank test. Trials. 12, A137 (2011).
  36. Yang, J., et al. Changes in expression of manganese superoxide dismutase, copper and zinc superoxide dismutase and catalase in Brachionus calyciflorus during the aging process. PloS ONE. 8 (2), e57186 (2013).
  37. Snell, T. W., Johnston, R. K., Rabeneck, B., Zipperer, C., Teat, S. Joint inhibition of TOR and JNK pathways interacts to extend the lifespan of Brachionus manjavacas (Rotifera). Exp. Gerontol. 52, 55-69 (2014).
  38. Klass, M. R. Aging in nematode Caenorhabditis-elegans – major biological and environmental-factors influencing life-span. Mech. Ageing Dev. 6 (6), 413-429 (1977).
  39. Priest, N. K., Mackowiak, B., Promislow, D. E. L. The role of parental age effects on the evolution of aging. Evolution. 56 (5), 927-935 (2002).

Play Video

Citazione di questo articolo
Kaneko, G., Yoshinaga, T., Gribble, K. E., Welch, D. M., Ushio, H. Measurement of Survival Time in Brachionus Rotifers: Synchronization of Maternal Conditions. J. Vis. Exp. (113), e54126, doi:10.3791/54126 (2016).

View Video