Summary

高稳定性,功能性毛纳米粒子和木纤维生物聚合物:迈向可持续纳米技术

Published: July 20, 2016
doi:

Summary

Synthesis schemes to prepare highly stable wood fiber-based hairy nanoparticles and functional cellulose-based biopolymers have been detailed.

Abstract

纳米粒子,如纳米技术和纳米医学的关键材料之一,在过去十年中取得了显著的重要性。虽然基于金属纳米粒子合成和环境相关的麻烦,纤维素引入了纳米粒子合成一个绿色,可持续的替代。这里,我们提出的化学合成和分离程序以基于木材纤维毛的纳米颗粒(轴承非晶和结晶区域)和生物聚合物的新类。通过软木浆的高碘酸盐氧化,纤维素的葡萄糖环的C 2 -C 3键被打开以形成2,3-二醛基。部分氧化的纤维进一步加热( 例如 ,T = 80℃)的结果在三个产品,即纤维状氧化纤维素,空间稳定的纳米晶纤维素(SNCC),并溶解二醛改性纤维素(DAMC),这是公通过间歇离心分离和共溶剂加成。部分氧化的纤维(不加热)被用作一个高反应性的中间产物以用亚反应转换几乎所有醛的羧基。共溶剂沉淀和离心导致electrosterically稳定纳米晶纤维素(ENCC)和二羧基化纤维素(DCC)。 SNCC因此表面电荷ENCC(羧基含量)被精确地通过控制碘酸氧化反应时间,从而导致高度稳定的纳米颗粒的轴承每克的纳米颗粒( 超过700毫摩尔的官能团,受控的醛的含量比常规NCC轴承<< 1毫摩尔官能团/克)。原子力显微镜(AFM),透射电子显微镜(TEM)和扫描电子显微镜(SEM)证明了棒状的形态。电导滴定,傅立叶变换红外光谱(FTIR),核磁共振(NMR),动态光散射(DLS),电动 – S的ONIC振幅(ESA)和声衰减谱棚光对这些纳米材料的优异性能。

Introduction

纤维素,如在世界上最丰富的生物聚合物,已被最近担任一个关键原料,得到命名纳米晶纤维素晶体纳米颗粒(NCC,也被称为纤维素纳米晶体的CNC)1。理解NCC合成的机理,需要探索纤维素纤维的结构。纤维素是直链和包含聚β-(1,4)-D-葡萄糖残基2多分散聚合物。在各单体的糖环通过糖苷氧连接形成的(1-1.5)链×10 4个吡喃葡萄糖单元2,3,引入交替结晶份和无序的,无定形的区域,首先通过Nageli和施文德纳2,4报道。取决于来源,纤维素的结晶部分可以采取多种多晶型5。

如果纤维素纤维是用强酸处理,如硫酸,非晶相可以是完全水解AWAy以扰乱聚合物并产生取决于来源各种长宽比的晶体颗粒( 例如 ,宽度的木材和棉花产量的90%以上的结晶纳米棒〜5-10纳米,长度〜100-300纳米,而tunicin,细菌,和藻类产生5-60纳米宽,100纳米至微米几个长NCC的)6。读者可参考在这些纳米材料2,5,7-16的科学和工程方面提供了大量的文学作品。尽管这些纳米颗粒的许多有趣的性质,它们的胶体稳定性一直在高盐浓度和高/低pH值的问题,由于其相对低的表面电荷量(小于1毫摩尔/克)17。

代替强酸水解,纤维素纤维可以用氧化剂(高碘)进行处理,在脱水-D-吡喃葡萄糖残基裂解的C 2 -C 3键以形成2,3-二醛单元无显著副反应18,19。这些部分氧化的纤维可以被用来作为一种有价值的中间体材料以产生仅仅使用化学反应的纳米颗粒轴承非晶和结晶区域(毛状纳米晶纤维素),无需任何机械剪切或超声处理20。当部分氧化度DS <2,加热氧化中的产品,即纤维状纤维素,水分散性二醛纤维素纳米晶须称为空间稳定的纳米晶纤维素(SNCC)三批纤维的结果,并溶解二醛改性纤维素(DAMC),其可以分离通过在共溶剂加成和精确控制间歇离心21。

对所述部分氧化的纤维受控氯酸盐氧化转换几乎所有的醛基至羧基单元,它可以为每克微晶纤维素引入高达7毫摩尔COOH基团视醛含量18 </suP>,作为稳定剂。这些纳米颗粒被称为electrosterically稳定纳米晶纤维素(ENCC)。此外,已经证实,带电毛发状凸出链软层上ENCC 17存在。这种材料已被用来作为一种高效吸附剂来清除重金属离子22。电荷这些纳米颗粒能够通过控制高碘反应时间23被精确地控制。

尽管纤维素的已知氧化还原反应,生产SNCC和ENCC的从未报道过的任何其他研究小组最可能是由于在分离的挑战。我们已经能够成功地合成和通过精确设计的反应和分离步骤分离纳米产品的各种馏分。这种视觉文章完整详细演示了如何重现性准备和表征上述新型纳米晶须轴承非晶和晶体部分期从木质纤维。本教程可能是在软质材料,生物和医药科学,纳米技术和纳米光子学,环境科学与工程和物理学领域活跃的研究人员的资产。

Protocol

小心:触摸它们之前,请阅读所有化学品的材料安全数据表(MSDS)。许多在此工作中使用的化学品可能会导致严重的健康损害。使用个人防护,如实验室外套,手套和护目镜是必须的。不要忘记,安全是第一位的。在整个合成中使用的水是蒸馏水。 1.部分氧化纤维作为中间体的制备撕4克C-90软木纸浆片材切成小块的约2×2 平方厘米。 浸泡撕裂纸浆片在?…

Representative Results

纸浆的高碘和绿泥石氧化期间每个部分的质量部分和电荷含量取决于反应时间( 见表1)。此外,DAC分子量取决于加热条件和停留时间( 见表2)。一旦SNCC和DAMC制成,它们通过添加丙醇( 图1)中沉淀出来。为了测量ENCC的电荷内容,电导滴定进行( 图2)。 NCC和ENCC胶体行为由离子强度和pH的影响。的大小和NCC和ENCC与氯化?…

Discussion

以下在此视觉本文所讨论的化学,高度稳定的基于纤维素的纳米颗粒的具有可调电荷轴承结晶和非结晶相(毛状纳米晶纤维素)的频谱产生。取决于碘酸氧化时间,如表1所示,各种产品,得到:氧化纤维(级分1),SNCC(级分2),和DAMC(馏分3),其每个提供独特的性能,如所定义的大小,形态,结晶度,和醛含量。在各种带负电荷的物质,即馏分1(羧化的纸浆纤维),级分2(ENCC?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Financial support from an Industrial Research Chair funded by FPInnovations and NSERC for a NSERC Discovery grant and from the NSERC Innovative Green Wood Fiber Products Network are acknowledged.

Materials

Q-90 softwood pulp FPInnovations
Sodium periodate Sigma-Aldrich S1878-500G/CAS7790-28-5 Light sensitive, Strong oxidizer, must be kept away from flammable materials
Sodium chloride ACP Chemicals S2830-3kg/7647-14-5
2-Propanol Fisher L-13597/67-63-0 Flammable
Ethylene glycol Sigma-Aldrich 102466-1L/107-21-1
Sodium hydroxide Fisher L-19234/1310-73-2 Strong base, causes serious health effects
Sodium chlorite Sigma-Aldrich 71388-250G/7758-19-2 Reactive with reducing agents and combustible materials
Hydrogen peroxide Fisher H325-500/7722-84-1 Corrosive and oxidizing agent, keep in a cool and dark place
Ethanol Commercial alcohols P016EAAN Flammable
Hydrochloric acid ACP Chemicals H-6100-500mL/7647-01-0 Strong acid, causes serious health effects
Hydroxylamine hydrochloride Sigma-Aldrich 159417-100G/5470-11-1 Unstable at high temperature and humidity, mutagenic
Centrifuge Beckman Coulter J2 High rotary speed
Fixed angle rotor Beckman Coulter JA-25.50 Tighten the lid carefully
Dialysis tubing Spectrum Labs Spectra (Part No. 132676) Cutoff Mw = 12-14 kD, Length ~ 30 cm, width ~ 4.5 cm
Aluminum cup VWR 611-1371 57 mm
Titrator Metrohm 836 Titrando

Riferimenti

  1. Habibi, Y., Lucia, L. A., Rojas, O. J. Cellulose nanocrystals: Chemistry , self-Assembly , and applications. Chem. Rev. 110 (6), 3479-3500 (2010).
  2. Samir, M. A. S. A., Alloin, F., Dufresne, A. Review of recent research into cellulosic whisker, their Properties and their application in nanocomposites field. Biomacromolecules. 6 (2), 612-626 (2005).
  3. Sjöström, E. . Wood chemistry: Fundamentals and applications. , (1993).
  4. Nageli, C., Schwendener, S. . Das Mikroskop, Theorie und Anwendung desselben. 2. Verbesserte auflage. , (1877).
  5. Moon, R. J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40 (7), 3941-3994 (2011).
  6. Klemm, D., Kramer, F., et al. Nanocelluloses: A new family of nature-based materials. Angew. Chem. Int. Ed. 50 (24), 5438-5466 (2011).
  7. Wang, N., Ding, E., Cheng, R. Surface modification of cellulose nanocrystals. Front. Chem. Eng. China. 1 (3), 228-232 (2007).
  8. Siqueira, G., Bras, J., Dufresne, A. Cellulosic bionanocomposites: A review of preparation, properties and applications. Polymers. 2 (4), 728-765 (2010).
  9. Siaueira, G., Bras, J., Dufresne, A. Cellulose whiskers versus microfibrils: Influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules. 10 (2), 425-432 (2009).
  10. Peng, B. L., Dhar, N., Liu, H. L., Tam, K. C. Chemistry and applications of nanocrystalline cellulose and its derivatives: A nanotechnology perspective. Can. J. Chem. Eng. 89 (5), 1191-1206 (2011).
  11. Lu, P., Hsieh, Y. Lo Preparation and properties of cellulose nanocrystals: Rods, spheres, and network. Carbohydr. Polym. 82 (2), 329-336 (2010).
  12. Liu, D., Chen, X., Yue, Y., Chen, M., Wu, Q. Structure and rheology of nanocrystalline cellulose. Carbohydr. Polym. 84 (1), 316-322 (2011).
  13. Lam, E., Male, K. B., Chong, J. H., Leung, A. C. W., Luong, J. H. T. Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends Biotechnol. 30 (5), 283-290 (2012).
  14. Kalia, S., Dufresne, A., et al. Cellulose-based bio- and nanocomposites: A review. Int. J. Polym. Sci. 2011, 1-35 (2011).
  15. Bai, W., Holbery, J., Li, K. A technique for production of nanocrystalline cellulose with a narrow size distribution. Cellulose. 16 (3), 455-465 (2009).
  16. Eichhorn, S. J., Dufresne, A., et al. Review: Current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci. 45 (1), 1-33 (2010).
  17. Safari, S., Sheikhi, A., van de Ven, T. G. M. Electroacoustic characterization of conventional and electrosterically stabilized nanocrystalline celluloses. J. Colloid Interface Sci. 432, 151-157 (2014).
  18. Yang, H., Tejado, A., Alam, N., Antal, M., Van De Ven, T. G. M. Films prepared from electrosterically stabilized nanocrystalline cellulose. Langmuir. 28 (20), 7834-7842 (2012).
  19. Guthrie, R. D. The "dialdehydes" from the periodate oxidation of carbohydrates. Adv Carbohydr Chem. 16, 105-158 (1961).
  20. van de Ven, T. G. M., Tejado, A., Alam, M. N., Antal, M. Novel highly charged non-water soluble cellulose products, includes all types of cellulose nanostructures especially cellulose nanofibers, and method of making them. U.S. Provisional Patent Application. , (2011).
  21. Yang, H., Chen, D., van de Ven, T. G. M. Preparation and characterization of sterically stabilized nanocrystalline cellulose obtained by periodate oxidation of cellulose fibers. Cellulose. 22 (3), 1743-1752 (2015).
  22. Sheikhi, A., Safari, S., Yang, H., van de Ven, T. G. M. Copper removal using electrosterically stabilized nanocrystalline cellulose. ACS Appl. Mater. Interfaces. 7 (21), 11301-11308 (2015).
  23. Yang, H., Alam, M. N., van de Ven, T. G. M. Highly charged nanocrystalline cellulose and dicarboxylated cellulose from periodate and chlorite oxidized cellulose fibers. Cellulose. 20 (4), 1865-1875 (2013).
  24. Kim, U. J., Kuga, S., Wada, M., Okano, T., Kondo, T. Periodate oxidation of crystalline cellulose. Biomacromolecules. 1 (3), 488-492 (2000).
  25. Araki, J., Wada, M., Kuga, S. Steric stabilization of a cellulose microcrystal suspension by poly (ethylene glycol) grafting. Cellulose. 17 (1), 21-27 (2001).

Play Video

Citazione di questo articolo
Sheikhi, A., Yang, H., Alam, M. N., van de Ven, T. G. M. Highly Stable, Functional Hairy Nanoparticles and Biopolymers from Wood Fibers: Towards Sustainable Nanotechnology. J. Vis. Exp. (113), e54133, doi:10.3791/54133 (2016).

View Video