Summary

表面拴DNA大分子的可视化与荧光蛋白的DNA结合肽

Published: June 23, 2016
doi:

Summary

We present an approach for visualizing fluorescent protein DNA binding peptide (FP-DBP)-stained large DNA molecules tethered on the polyethylene glycol (PEG) and avidin-coated glass surface and stretched with microfluidic shear flows.

Abstract

Large DNA molecules tethered on the functionalized glass surface have been utilized in polymer physics and biochemistry particularly for investigating interactions between DNA and its binding proteins. Here, we report a method that uses fluorescent microscopy for visualizing large DNA molecules tethered on the surface. First, glass coverslips are biotinylated and passivated by coating with biotinylated polyethylene glycol, which specifically binds biotinylated DNA via avidin protein linkers and significantly reduces undesirable binding from non-specific interactions of proteins or DNA molecules on the surface. Second, the DNA molecules are biotinylated by two different methods depending on their terminals. The blunt ended DNA is tagged with biotinylated dUTP at its 3′ hydroxyl terminus, by terminal transferase, while the sticky ended DNA is hybridized with biotinylated complimentary oligonucleotides by DNA ligase. Finally, a microfluidic shear flow makes single DNA molecules stretch to their full contour lengths after being stained with fluorescent protein-DNA binding peptide (FP-DBP).

Introduction

拴在玻璃或珠表面大DNA分子可视化的已被用于研究DNA底物,1,2-和高分子物理上DNA-蛋白质相互作用,蛋白质的动态。3,4-一种单-拴系的大的DNA分子平台有几个不同的相对于其他的DNA固定化方法的优点。5首先,拴表面上的大的DNA分子具有无剪切流,这是一种DNA结合蛋白识别其结合位点至关重要的自然随机卷曲构象。第二,这是很容易改变的周围的DNA分子的化学环境中的一系列流室酶反应。第三,微流体剪切流动诱导DNA分子伸展到全轮廓长度,这是非常困难的使用替代的DNA伸长达到100%的方法,如表面固定6和纳通道禁闭。7的充分stretcheD核酸分子也可提供一种可用于基因组图谱上监测酶促运动有用的位置信息。

然而,该DNA束缚方法在该嵌入染料的一个关键缺点如YOYO-1通常会导致拴系的DNA分子,以通过荧光激励光可容易地断裂。一般地,大DNA分子必须与用于可视化在荧光显微镜下的荧光染料染色。为了这个目的,YOYO-1或其它TOTO系染料主要使用,因为当它们相互插入双链DNA这些染料仅发出荧光。8然而,这是众所周知的,双-嵌入染导致光诱导的DNA光裂解因为荧光的嵌入。9。此外,拴在表面上的荧光染色的DNA分子更脆弱,因为剪切流动能发挥上自由移动的DNA分子破坏的力量。因此,我们开发的FP-DBP作为一种新颖的ðNA-染色染料蛋白成像拴在表面上大DNA分子。使用FP-DBP的优点是,它不会导致其所结合的DNA分子的光裂解。10此外,FP-DBP不增加DNA的轮廓长度,而双-嵌入染料增加轮廓长度由约33%。

此视频方法引入了对拴系大DNA分子的PEG生物素表面的实验方法。 图1示出了具有平端和粘性末端圈养的DNA的不同方法。因此,这种染色方法可以适用于任何类型的DNA分子: 图2示出了流室组件,其可通过注射泵来控制,以产生剪切流伸展的DNA分子以及加载的化学和酶的示意图的解决方案。 图3显示拴在PEGylat完全拉伸的DNA分子的显微照片ED表面11和FP-DBP染色。

Protocol

1. DNA生物素 使用终端转移钝端DNA的生物素化(TDT) 注意:使用T 4 DNA(166千碱基),它是一个平端的DNA。 添加2.5mM的5微升氯化钴,5微升10×反应缓冲液,0.5微升10毫摩尔生物素11-dUTP的的,末端转移0.5微升(10单位)和0.5微升的T4 DNA(0.5微克/微升)到反应混合物中。通过加入38.5微升的水使至50微升的最终体积。 孵育在37℃下将反应混合物1小时。 注…

Representative Results

图1示出了两个不同的DNA束缚方法依赖于DNA分子的末端结构。 图1a示出了粘端的DNA分子是如何与互补的生物素化的寡核苷酸,其被固定在亲和素包被的PEG表面上进行杂交。 图1b,示出了另外的生物素化的ddNTP或的dNTP的3'羟基通过末端转移酶钝端DNA的基团。我们增加了DNA分子和生物素之间的柔性连接体。这增加了结扎和抗生物素蛋白-?…

Discussion

在这里,我们提出了一个可视化的生物素锚定在表面上长的DNA分子的平台。我们已经报道了拴亲和素蛋白涂层表面与生物素牛血清白蛋白对DNA分子的方法。6在前面的方法,我们发现拴在造成染污DNA分子双插染料DNA光裂解的关键问题表面。由于这些不断激发荧光团有很高的概率攻击DNA磷酸骨架,9激发光功率必须最小化,以避免光裂解。

为了克服这种不便,我?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This work was supported by the Sogang University Research Grant of 201410036.

Materials

1. DNA Biotinylation
1.1) Biotinylation of blunt-end DNA using Terminal Transferase (TdT)
Terminal Transferase New England Biolabs M0315S Provided with 10x reaction buffer, 2.5 mM Cobalt chloride
Biotin-11-dUTP Invitrogen R0081 Biotin-ddNTP is also available
T4GT7 Phage DNA Nippon Gene 318-03971
Ethylenediaminetetraacetic acid Sigma-Aldrich E6758 EDTA
1.2) Biotinylation of sticky end DNA Using DNA Ligase
T4 DNA Ligase New England Biolabs M0202S Provided with 10x reaction buffer
Lambda Phage DNA Bioneer D-2510 Also available at New England Biolabs
2. Functionalized Surface Derivatization
2.1) Piranha Cleaning
Coverslip Marienfeld-Superior 0101050 22×22 mm, No. 1 Thickness
Teflon rack Custom Fabrication
PTFE Thread Seal Tape Han Yang Chemical Co. Ltd. 3032292 Teflon™ tape
Sulferic acid Jin Chemical Co. Ltd. S280823 H2SO4, 95 % Purity
Hydrogen peroxide Jin Chemical Co. Ltd. H290423 H2O2, 35 % in water
Sonicator Daihan Scientific Co. Ltd. WUC-A02H Table-top Ultrasonic Cleaner
2.2) Aminosilanization on Glass Surface
N-[3-(Trimethoxysilyl)propyl]
ethylenediamine
Sigma-Aldrich 104884
Glacial Acetic Acid Duksan Chemicals 414 99 % Purity
Methyl Alcohol Jin Chemical Co. Ltd. M300318 99.9 % Purity
Polypropylene Container Qorpak PLC-04907
Ethyl Alcohol Jin Chemical Co. Ltd. A300202 99.9 % Purity
2.3) PEGylation of the coverslip
Sodium Bicarbonate Sigma-Aldrich S5761
Syringe Filter Sartorius 16534———-K
Biotin-PEG-SC Laysan Bio Biotin-PEG-SC-5000
mPEG-SVG Laysan Bio MPEG-SVA-5000
Acetone Jin Chemical Co. Ltd. A300129 99 % Purity
Microscope Slides Marienfeld-Superior 1000612 ~76x26x1 mm
3. Assembling a Flow Chamber
Acrylic Support Custom Fabrication
Double-sided Tape 3M Transparent type
Quick-dry Epoxy 3M
Polyethylene Tubing Cole-Parmer 06417-11, 06417-21
Gas Tight 250 µl Syringe Hamilton 81165
Syringe Pump New Era Pump Systems Inc. NE-1000
4. Sample Loading into Flow Chamber
Neutravidin Thermo Scientific 31000
Tris base Sigma-Aldrich T1503-5KG Trizma base
Microscope Olympus IX70
EMCCD Camera Q Imaging Rolera EM-C2
Solid-state Laser (488 nm) Oxxius LBX488
Alconox Alconox Inc.

Riferimenti

  1. Smith, S. B., Finzi, L., Bustamante, C. Direct Mechanical Measurements of the Elasticity of Single DNA-Molecules by Using Magnetic Beads. Science. 258 (5085), 1122-1126 (1992).
  2. Finkelstein, I. J., Visnapuu, M. -. L., Greene, E. C. Single-molecule imaging reveals mechanisms of protein disruption by a DNA translocase. Nature. 468 (7326), 983-987 (2010).
  3. Doyle, P. S., Ladoux, B., Viovy, J. L. Dynamics of a tethered polymer in shear flow. Phys. Rev. Lett. 84 (20), 4769-4772 (2000).
  4. Perkins, T. T., Quake, S. R., Smith, D. E., Chu, S. Relaxation of a Single DNA Molecule Observed by Optical Microscopy. Science. 264 (5160), 822-826 (1994).
  5. Cai, W., et al. Ordered restriction endonuclease maps of yeast artificial chromosomes created by optical mapping on surfaces. Proc. Natl. Acad. Sci. U.S.A. 92 (11), 5164-5168 (1995).
  6. Kim, Y., Jo, K. Neutravidin coated surfaces for single DNA molecule analysis. Chem. Comm. 47 (22), 6248-6250 (2011).
  7. Kim, Y., et al. Nanochannel confinement: DNA stretch approaching full contour length. Lab on a Chip. 11 (10), 1721-1729 (2011).
  8. Glazer, A. N., Rye, H. S. Stable dye-DNA intercalation complexes as reagents for high-sensitivity fluorescence detection. Nature. 359 (6398), 859-861 (1992).
  9. Graneli, A., Yeykal, C. C., Prasad, T. K., Greene, E. C. Organized arrays of individual DNA molecules tethered to supported lipid bilayers. Langmuir. 22 (1), 292-299 (2006).
  10. Lee, S., et al. DNA binding fluorescent proteins for the direct visualization of large DNA molecules. Nucleic Acids Res. , (2015).
  11. Roy, R., Hohng, S., Ha, T. A practical guide to single-molecule FRET. Nat Methods. 5 (6), 507-516 (2008).
  12. Chandradoss, S. D., et al. Surface passivation for single-molecule protein studies. J. Vis. Exp. (86), e50549 (2014).
check_url/it/54141?article_type=t

Play Video

Citazione di questo articolo
Lee, S., Jo, K. Visualization of Surface-tethered Large DNA Molecules with a Fluorescent Protein DNA Binding Peptide. J. Vis. Exp. (112), e54141, doi:10.3791/54141 (2016).

View Video