Summary

Kinetic Måling og Real Time Visualisering af Somatisk Omprogrammering

Published: July 30, 2016
doi:

Summary

Protokollen præsenteres i denne undersøgelse beskriver fremgangsmåder til tidstro overvågning af omprogrammering progression via den kinetiske måling af positive og negative pluripotente stamceller cellemarkører ved anvendelse af flowcytometri analyse. Protokollen omfatter også imaging-vurdering af morfologi, og markør eller reporter udtryk under iPSC generation.

Abstract

Somatic reprogramming has enabled the conversion of adult cells to induced pluripotent stem cells (iPSC) from diverse genetic backgrounds and disease phenotypes. Recent advances have identified more efficient and safe methods for introduction of reprogramming factors. However, there are few tools to monitor and track the progression of reprogramming. Current methods for monitoring reprogramming rely on the qualitative inspection of morphology or staining with stem cell-specific dyes and antibodies. Tools to dissect the progression of iPSC generation can help better understand the process under different conditions from diverse cell sources.

This study presents key approaches for kinetic measurement of reprogramming progression using flow cytometry as well as real-time monitoring via imaging. To measure the kinetics of reprogramming, flow analysis was performed at discrete time points using antibodies against positive and negative pluripotent stem cell markers. The combination of real-time visualization and flow analysis enables the quantitative study of reprogramming at different stages and provides a more accurate comparison of different systems and methods. Real-time, image-based analysis was used for the continuous monitoring of fibroblasts as they are reprogrammed in a feeder-free medium system. The kinetics of colony formation was measured based on confluence in the phase contrast or fluorescence channels after staining with live alkaline phosphatase dye or antibodies against SSEA4 or TRA-1-60. The results indicated that measurement of confluence provides semi-quantitative metrics to monitor the progression of reprogramming.

Introduction

Patient-afledte inducerede pluripotente stamceller (iPSCs) er lovende redskaber til celleterapi og narkotika screening. De giver et autologt kilde til celler til terapi. Derudover de omfatter en meget bred vifte af genetiske baggrunde, der muliggør en detaljeret in vitro analyse af genetiske sygdomme ud over, hvad nuværende embryonale stamceller (ESC) linjer ville tillade. Nylige fremskridt har ført til udviklingen af flere metoder til generering iPSCs, herunder omprogrammering med Sendai-virus, episomale plasmider eller mRNA'er 1,2. Især er forskellige omprogrammering metoder i forbindelse med varierende niveauer af effektivitet og sikkerhed, og vil sandsynligvis variere på andre måder, der påvirker deres egnethed til forskellige applikationer. Med tilgængeligheden af ​​en række omprogrammering teknologier, er det blevet vigtigt at udvikle metoder til at vurdere omprogrammering proces. De fleste eksisterende metoder er afhængige af den kvalitative undersøgelse af morfologi eller farvningstamcelleantistoffer-specifikke farvestoffer og antistoffer. En nylig udviklet metode gør brug af lentivirale fluorescens reportere der er følsomme for PSC-specifikke miRNA eller differentierede cellespecifikke mRNA'er 3. Sådanne overvågningsmetoder lette udvælgelsen og optimering af omprogrammering teknikker til forskellige situationer. For eksempel har CDy1 blevet anvendt som en fluorescerende probe til tidlige iPSCs for at screene for omprogrammering modulatorer 4. Evnen til at observere og sammenligne forskellige omprogrammering eksperimenter er også kritisk til at få en bedre forståelse af selve processen. For eksempel er det nu kendt, at nogle somatiske celletyper er lettere at omprogrammere end andre 5, og at celler går gennem mellemliggende tilstande under omprogrammering 6-8. Desværre, mekanismerne bag omprogrammering proces er stadig ikke helt forstået og dermed de nøjagtige forskelle mellem omprogrammering metoder også mangler at blive defined. Således metoder til overvågning, vurdering og sammenligning af omprogrammering begivenheder fortsat være kritisk for stamcelle feltet.

De er beskrevet i denne protokol metoder muliggøre overvågning og vurdering af den omprogrammering proces, og viser, hvordan disse teknikker kan bruges til at sammenligne forskellige sæt omprogrammering reagenser. Den første fremgangsmåde involverer flowcytometri analyser anvendelse af kombinationer af antistoffer mod positiv og negativ pluripotente stamcelle (PSC) markører. Den anden fremgangsmåde par imaging i realtid og måling af total sammenflydning (den procentvise overfladeareal dækket af cellerne) og sammenløbet af markør signaler (den procentvise overfladeareal dækket af de fluorescerende signaler).

Protocol

1.Solution og Medium Forberedelse Basalmembranmatrix (oprenset fra Engelbreth-Holm-Swarm Tumor) tø langsomt basalmembranmatrix (5 ml) på is ved 4 ° C natten over. Fortynd stamopløsning 1: 1 med 5 ml iskold, steril DMEM / F-12-medium i en steril, forkølet 15 ml konisk rør. Dispensere alikvoter i nedkølede, 1,5 ml sterile mikro centrifugerør og straks opbevares ved -20 ° C. Før brug, optø frosne 1: 1 basalmembranmatrix alikvot natten over ved 4 ° C. På …

Representative Results

Overvågning omprogrammering Kinetics anvendelse af flowcytometri CD44 er en fibroblast markør mens SSEA4 er en PSC markør 6,10. Som forventet ud fra dette ekspressionsmønster, flowcytometri af BJ fibroblaster viser en SSEA4 – CD44 + population, der letter oprettelsen af kvadrant porte i kombination med den ufarvede prøve. Under omprogrammering af DF1 fibroblaster med Sendai-vira, …

Discussion

This study provides strategies for monitoring and tracking of the reprogramming process using flow cytometry and real-time imaging-based analysis. The critical steps in the protocol are initiating reprogramming, measuring reprogramming progression based on marker expression and real-time monitoring of reprogramming. Any reprogramming method of choice can be used but here we focus on Sendai based reprogramming of human fibroblasts. The advantage of this method is the ease of use and consistent high efficiency of reprogram…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Forfatterne takker Tchad MacArthur for nyttige diskussioner.

Materials

DMEM, high glucose, GlutaMAXSupplement, pyruvate Thermo Fisher Scientific 10569-010
Fetal Bovine Serum, embryonic stem cell-qualified, US origin Thermo Fisher Scientific 16141-061
MEM Non-Essential Amino Acids Solution (100X) Thermo Fisher Scientific 11140-050
Trypsin-EDTA (0.05%), phenol red  Thermo Fisher Scientific 25300-054
Mouse (ICR) Inactivated Embryonic Fibroblasts Thermo Fisher Scientific A24903
Attachment Factor Protein (1X) Thermo Fisher Scientific S-006-100
DMEM/F-12, GlutaMAX supplement Thermo Fisher Scientific 10565-018
KnockOut Serum Replacement Thermo Fisher Scientific 10828010
2-Mercaptoethanol (55 mM) Thermo Fisher Scientific 21985-023
Collagenase, Type IV, powder Thermo Fisher Scientific 17104-019
TrypLE Select Enzyme (1X), no phenol red  Thermo Fisher Scientific 12563-011
DPBS, no calcium, no magnesium  Thermo Fisher Scientific 14190-144
Geltrex LDEV-Free, hESC-Qualified, Reduced Growth Factor Basement Membrane Matrix Thermo Fisher Scientific A1413302
Essential 8 Medium Thermo Fisher Scientific A1517001
FGF-Basic (AA 1-155) Recombinant Human Protein Thermo Fisher Scientific PHG0264
UltraPure 0.5M EDTA, pH 8.0 Thermo Fisher Scientific 15575-020
Bovine Albumin Fraction V (7.5% solution) Thermo Fisher Scientific 15260-037
HEPES (1 M) Thermo Fisher Scientific 15630-080
Penicillin-Streptomycin (10,000 U/mL) Thermo Fisher Scientific 15140-122
InSolution Y-27632 EMD Millipore 688001
CytoTune-iPS Sendai Reprogramming Kit Thermo Fisher Scientific A1378001
CytoTune-iPS 2.0 Sendai Reprogramming Kit Thermo Fisher Scientific A16517
Countess II Automated Cell Counter Thermo Fisher Scientific AMQAX1000
Countess Cell Counting Chamber Slides Thermo Fisher Scientific C10228
BJ ATCC Human Foreskin Fibroblasts, Neonatal ATCC CRL-2522
DF1 Adult Human Dermal Fibroblast Thermo Fisher Scientific N/A
BG01V/hOG Cells Variant hESC hOct4-GFP Reporter Cells Thermo Fisher Scientific R7799-105
IncuCyte ZOOM Essen BioScience
SSEA-4 Antibody, Alexa Fluor 647 conjugate (MC813-70) Thermo Fisher Scientific SSEA421
SSEA-4 Antibody, Alexa Fluor 488 conjugate (eBioMC-813-70 (MC-813-70)) Thermo Fisher Scientific A14810
SSEA-4 Antibody (MC813-70) Thermo Fisher Scientific 41-4000
TRA-1-60 Antibody (cl.A) Thermo Fisher Scientific  41-1000
CD44 Rat Anti-Human/Mouse mAb (clone IM7), PE-Cy5 conjugate Thermo Fisher Scientific A27094
CD44 Alexa Fluor 488 Conjugate Kit for Live Cell Imaging Thermo Fisher Scientific A25528
CD44 Rat Anti-Human/Mouse mAb (Clone IM7) Thermo Fisher Scientific RM-5700 (no longer available)
Goat anti-Mouse IgG (H+L) Secondary Antibody, Alexa Fluor 488 conjugate Thermo Fisher Scientific  A-11029
Goat anti-Rat IgG (H+L) Secondary Antibody, Alexa Fluor 594 conjugate Thermo Fisher Scientific  A-11007
Alkaline Phosphatase Live Stain Thermo Fisher Scientific A14353
TRA-1-60 Alexa Fluor 488 Conjugate Kit for Live Cell Imaging Thermo Fisher Scientific A25618
CD24 Mouse Anti-Human mAb (clone SN3), FITC conjugate Thermo Fisher Scientific MHCD2401
beta-2 Microglobulin Antibody, FITC conjugate (B2M-01) Thermo Fisher Scientific A15737
EpCAM / CD326 Antibody, FITC conjugate (VU-1D9) Thermo Fisher Scientific A15755
CD73 / NT5E Antibody (7G2) Thermo Fisher Scientific 41-0200
VECTOR Red Alkaline Phosphatase (AP) Substrate Kit Vector Laboratories SK-5100
Zeiss Axio Observer.Z1 microscope  Carl Zeiss 491912-0003-000
FlowJo Data Analysis Software FLOJO, LLC N/A
Attune Accoustic Focusing Cytometer, Blue/Red Laser Thermo Fisher Scientific Use Attune NXT 
S3e Cell Sorter (488/561 nm) BIO-RAD 1451006
Falcon 12 x 75 mm Tube with Cell Strainer Cap Corning 352235
Falcon 15 mL, high-clarity, dome-seal screw cap Corning 352097
Falcon T-75 Flask Corning 353136
Falcon T-175 Flask Corning 353112
Falcon 6-well dish Corning 353046
HERAEUS HERACELL CO2 ROLLING INCUBATOR Thermo Fisher Scientific 51013669
Nonstick, RNase-free Microfuge Tubes, 1.5 mL AM12450
HulaMixer Sample Mixer 15920D

Riferimenti

  1. Yamanaka, S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell. 10, 678-684 (2012).
  2. Robinton, D. A., Daley, G. Q. The promise of induced pluripotent stem cells in research and therapy. Nature. 481, 295-305 (2012).
  3. Kamata, M., Liang, M., Liu, S., Nagaoka, Y., Chen, I. S. Live cell monitoring of hiPSC generation and differentiation using differential expression of endogenous microRNAs. PLoS One. 5, e11834 (2010).
  4. Vendrell, M., Zhai, D., Er, J. C., Chang, Y. T. Combinatorial strategies in fluorescent probe development. Chem Rev. 112, 4391-4420 (2012).
  5. Aasen, T., et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol. 26, 1276-1284 (2008).
  6. Quintanilla, R. H., Asprer, J. S., Vaz, C., Tanavde, V., Lakshmipathy, U. CD44 is a negative cell surface marker for pluripotent stem cell identification during human fibroblast reprogramming. PLoS One. 9, e85419 (2014).
  7. Papp, B., Plath, K. Reprogramming to pluripotency: stepwise resetting of the epigenetic landscape. Cell Res. 21, 486-501 (2011).
  8. Nefzger, C. M., Alaei, S., Knaupp, A. S., Holmes, M. L., Polo, J. M. Cell surface marker mediated purification of iPS cell intermediates from a reprogrammable mouse model. J Vis Exp. , e51728 (2014).
  9. Xu, C., et al. Immortalized fibroblast-like cells derived from human embryonic stem cells support undifferentiated cell growth. Stem Cells. 22, 972-980 (2004).
  10. International Stem Cell Initiative. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol. 25, 803-816 (2007).
  11. Singh, U., et al. Novel live alkaline phosphatase substrate for identification of pluripotent stem cells. Stem Cell Rev. 8, 1021-1029 (2012).
  12. Naujok, O., Lenzen, S. A critical re-evaluation of CD24-positivity of human embryonic stem cells differentiated into pancreatic progenitors. Stem Cell Rev. 8, 779-791 (2012).
  13. Ramirez, J. M., et al. Brief report: benchmarking human pluripotent stem cell markers during differentiation into the three germ layers unveils a striking heterogeneity: all markers are not equal. Stem Cells. 29, 1469-1474 (2011).
  14. Huang, H. P., et al. Epithelial cell adhesion molecule (EpCAM) complex proteins promote transcription factor-mediated pluripotency reprogramming. J Biol Chem. 286, 33520-33532 (2011).
  15. Kolle, G., et al. Identification of human embryonic stem cell surface markers by combined membrane-polysome translation state array analysis and immunotranscriptional profiling. Stem Cells. 27, 2446-2456 (2009).
  16. Thyagarajan, B., et al. Creation of engineered human embryonic stem cell lines using phiC31 integrase. Stem Cells. 26, 119-126 (2008).
check_url/it/54190?article_type=t

Play Video

Citazione di questo articolo
Quintanilla Jr., R. H., Asprer, J., Sylakowski, K., Lakshmipathy, U. Kinetic Measurement and Real Time Visualization of Somatic Reprogramming. J. Vis. Exp. (113), e54190, doi:10.3791/54190 (2016).

View Video