Summary

HIV-1 Gag的可视化绑定到巨人的单片囊泡(GUV)膜

Published: July 28, 2016
doi:

Summary

We illustrate here an in vitro membrane binding assay in which interactions between HIV-1 Gag and lipid membranes are visually analyzed using YFP-tagged Gag synthesized in a wheat germ-based in vitro translation system and GUVs prepared by an electroformation technique.

Abstract

HIV-1的结构蛋白,PR55 的Gag(或加格),在病毒组装过程中结合到在细胞质膜。加格膜结合是病毒颗粒形成的一个重要步骤,因为在加格膜结合导致病毒颗粒生产严重受损的缺陷。获得的Gag-脂质膜相互作用的机理的细节,基于核磁共振,蛋白足迹,表面等离子体共振,脂质体浮选离心或荧光脂质珠体外方法结合迄今已开发的。然而,每一个的这些体外方法有其局限性。为了克服这些局限性,并提供一个互补的方式来先前建立的方法,我们开发了一种体外测定,其中HIV-1 Gag和脂质膜之间的相互作用发生在一个“细胞样”的环境。在该测定中,GAG结合到脂质膜在视觉上分析使用YFP – taggeð加格在小麦胚芽合成基于体外翻译系统,并通过electroformation技术制备GUVs。在这里,我们描述了背景和协议,以获得必要的测定肉豆蔻酰化全长的Gag蛋白和GUV膜和检测的Gag-GUV通过显微镜约束力。

Introduction

人类免疫缺陷病毒1型(HIV-1)是一种有包膜的病毒,在大多数细胞类型组装在和从质膜(PM)的芽。 HIV-1病毒粒子的装配是由称为PR55 的Gag(GAG)的55 kDa的病毒核心蛋白驱动。加格被合成为四个主要的结构域,即,矩阵,衣壳,核衣壳和P6,以及两个间隔肽SP1和SP2组成的前体多蛋白。在装配过程中,矩阵(MA)域负责加格靶向组装现场,衣壳(CA)域介导的Gag Gag的相互作用,核衣壳(NC)域募集病毒基因组RNA和P6新兵宿主因素,援助从质膜病毒颗粒断裂。加格也通过加入在其N-末端14个碳的脂肪酸或肉豆蔻部分的经历共翻译修饰。

膜的Gag的结合是用于病毒装配的一项基本要求,因为mutants是在膜结合缺陷不能产生病毒颗粒。我们和其他人已经表明,膜是由马域内偶信号介导的Gag的结合:一种介导与脂质双层和称为高碱性区域MA域内的碱性残基簇(疏水相互作用的N-末端肉豆蔻基HBR)与上下午1-4酸性脂相互作用。使用polyphosphoinositide 5-磷酸酶IV(5ptaseIV),其催化PM-特定酸性磷脂phosphatidylinositol-的水解酶的异位表达Gag的膜相互作用的研究(4,5)-bisphosphate [PI(4,5)P 2]到磷脂酰肌醇-4-磷酸,在细胞中建议的Gag-PM定位由PI(4,5)P2 3,5-介导的。但是, 在体外研究旨在理解的Gag-PI(4,5)P2的更多的机械细节2相互作用已被证明是具有挑战性的原因很多。对于例如,全长的纯化肉豆蔻酰化的HIV-1 Gag的生化实验已经至少部分技术上难以由于加格的倾向纯化期间聚集。因此,HIV-1 Gag的截短形式,如秘耳-MA或秘耳-MA-CA,或者非肉豆蔻酰化形式已被频繁地研究,必要的Gag纯化而使用( ,核磁共振,蛋白足迹,和表面等离子体共振6-9)。备选地,耦合体外转录-翻译反应已被用于产生其它生化研究1,2-全长肉豆蔻酰化的HIV-1 Gag的。典型地,在这个系统中,一个编码的Gag质粒被转录并用真核细胞裂解物( 例如 ,兔网织红细胞裂解物),缺少任何细胞膜和信使RNA的但含有用于转录和翻译机器翻译。反应后,将含有Gag的细胞裂解物与我混合mbranes与脂类加格相互作用的分析。除了 ​​易于制备全长肉豆蔻酰化的Gag的,使用体外转录翻译系统的方法具有的Gag合成和随后的膜结合反应发生在一个“真核细胞溶胶状”环境,可能更好地代表生理条件的优点。此属性促成了研究,结果表明绑定MA域RNA分子调节加格在竞争方式1,2,10-12结合酸性血脂。然而,由于在这些细胞裂解物获得的Gag蛋白质的总量不高,与放射性标记的氨基酸的蛋白质的代谢标记是必要的它们的检测。

根据不同的方法来测量的Gag – 脂质相互作用,已经使用了各种膜制剂。每一种方法都有其优势和局限性。大多数基于核磁共振的检验都要求短酰基利用脂质链是水溶性( 例如 ,C 4和C8-PI(4,5)P 2)6,8。而核磁共振方法来测试的Gag的结合具有在细胞中发现的长酰基链正在开发中的脂质,它们迄今已8,13只有在用肉豆蔻酰化或nonmyristoylated MA。可替代地,从脂质制备具有天然长度的酰基链的脂质体已在生化方法如脂质体浮选或荧光脂质体珠粒结合测定2,3,10,14-16使用。然而,在这些测定中使用脂质体具有的直径小,因而它们的膜有陡峭的和积极的曲率。与此相反,在颗粒组装的在HIV-1感染的细胞中的早期阶段,加格结合到PM,这是上的Gag的规模几乎平坦,并随后出芽期间诱导负曲率。因此,陡峭,正曲率脂质体膜可能不是理想的脂质双层研究加格脂相互作用。至于脂质体海军报通货膨胀测定,另一个潜在需要注意的是加格脂质复合高渗性蔗糖梯度离心过程中暴露可能影响实验结果。为缓解这些限制,并提供一个互补的实验系统中,为GAG结合到巨单层囊泡(GUVs)测定法已被开发,近年来。 GUVs是单脂双层囊泡,其直径延伸至几十微米。因此,这些膜的曲率类似于上的Gag的规模的PM。此外,由于它的大尺寸,这使得在光学显微镜目视检查,膜在混合时可以在不加格 – 脂质复合物的后续处理可以很容易地确定的荧光标记或标记的Gag蛋白结合这些囊泡。

在这里,我们描述了一个协议,以研究HIV-1 Gag的膜使用从electroformation方法获得GUVs约束力。各种方法,如温和水合,凝胶辅助水合,麦克风rofluidic喷射和electroformation 17-22已被用来获取GUVs。对于这里所描述的协议中,electroformation方法在形成具有酸性脂质和其相对的易用性,而不需要昂贵的设置的GUVs使用主要是因为它的效率。自的Gag的可视化就必须荧光报道,黄色荧光蛋白(YFP)的基因加入到的Gag(加格-YFP)的C末端。的gag-YFP蛋白通过在小麦胚芽裂解物的体外转录和翻译反应的基础上连续交换连续流(CECF)技术获得的。在该技术中,既除去反应和反应底物和能量分量的供给抑制副产物的在基于透析的机制得以实现。这些反应中,使用T7启动子的控制下编码的Gag-YFP的质粒。值得注意的是,如上文所示,小麦胚芽裂解支持豆蔻无需额外的元件23,24。使用这种方法,就已经可以得到足够数量的全长上GUV膜24肉豆蔻酰化的Gag-YFP为加格的可视化。在这里,我们描述了与HIV-1 GAG结合到PI协议(4,5)P2含GUV膜可以无需冗长后续处理以下结合反应,并提出,这种方法已经存在补充加格膜结合试验,并可以进行检查扩展进一步了解HIV-1的Gag膜结合。

Protocol

第1天:使用基于裂解物,小麦胚芽体外转录翻译系统的Gag蛋白表达 1,HIV-1加格的制备从冰柜中取出商业麦胚CECF试剂盒所有试剂(小麦胚芽裂解物储存在-80ºC;在-20ºC其他试剂)。解冻他们在冰上并如表1所示混合组分。 混合-1(进料混合) </…

Representative Results

使用上述协议中,我们制备POPC + POPS +澈组成GUVs(摩尔比:4.66:2.33:3)。该组合物被选为大约反映PM的PS和胆固醇的浓度。稳健高效加格结合仅观察到时,大脑PI(4,5)P 2被纳入POPC + POPS +澈混合物(POPC + POPS +澈+脑-PI(4,5)P2 [摩尔比:4:2:3:1]在本实施例中)( 图4,比较面板B和D与A和C)。的Gag-YFP结合POPC +组成GUVs POPS +澈+脑-PI(4,5)P <s…

Discussion

如上所述GUV结合测定法提供了在场景中其他蛋白质 – 类脂相互作用测定法有其局限性一个很好的选择。该测定允许我们检查与脂质双层上下文天然长酰基链肉豆蔻酰化全长Gag和酸性脂质之间的相互作用,并通过加格脂质的高密度蔗糖梯度或其它结合后处理没有冗长浮选离心这样做复合物。另一个优点是,加格的行为可以在复杂的混合物中进行检验( 例如 ,在细胞溶质组分的存在),这是?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们要感谢穆罕默德·萨利姆,精武和克里希南Raghunathan有益的讨论。在拍摄中我们也感谢普里亚Begani寻求帮助。这项工作是由美国国立卫生研究院授予R01 AI071727(以AO)和R01 GM110052(SLV到)的支持。

Materials

Digital Multimeter Meterman 30XR A generic multimeter that can measure resistance and volts will serve the purpose.
Function Generator Instek GFG-8216A A generic function generator that is capable of generating a sine wave at 10hz and 1V is sufficient.
ITO coated glass slides Delta Technologies, Loveland, CO CG-90IN
Incubator Hoefer Any incubator that can accurately maintain temperature will be sufficient
Vacuum chamber Nalgene
Thermomixer R Eppendorf 21516-166
Syringe Hamilton 80400 Gauge 22S, Syringe number 702
PDMS Sylgard elastomer base kit, Dow-Corning Sylgard, 184
RTS 100 Wheat Germ CECF Kit BiotechRabbit,
Berlin, Germany
BR1401001
DiD Life Technologies, Carlsbad, CA  D7757
POPC Avanti Polar Lipids, Alabaster, AL  850457C
POPS Avanti Polar Lipids 840034C
Cholesterol Avanti Polar Lipids 700041P
Brain-PI(4,5)P2  Avanti Polar Lipids 840046X

Riferimenti

  1. Chukkapalli, V., Inlora, J., Todd, G. C., Ono, A. Evidence in support of RNA-mediated inhibition of phosphatidylserine-dependent HIV-1 Gag membrane binding in cells. J Virol. 87 (12), 7155-7159 (2013).
  2. Chukkapalli, V., Oh, S. J., Ono, A. Opposing mechanisms involving RNA and lipids regulate HIV-1 Gag membrane binding through the highly basic region of the matrix domain. Proc Natl Acad Sci U S A. 107 (4), 1600-1605 (2010).
  3. Chukkapalli, V., Hogue, I. B., Boyko, V., Hu, W. S., Ono, A. Interaction between the human immunodeficiency virus type 1 Gag matrix domain and phosphatidylinositol-(4,5)-bisphosphate is essential for efficient gag membrane binding. J Virol. 82 (5), 2405-2417 (2008).
  4. Zhou, W., Parent, L. J., Wills, J. W., Resh, M. D. Identification of a membrane-binding domain within the amino-terminal region of human immunodeficiency virus type 1 Gag protein which interacts with acidic phospholipids. J Virol. 68 (4), 2556-2569 (1994).
  5. Ono, A., Ablan, S. D., Lockett, S. J., Nagashima, K., Freed, E. O. Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. Proc Natl Acad Sci U S A. 101 (41), 14889-14894 (2004).
  6. Saad, J. S., et al. Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc Natl Acad Sci U S A. 103 (30), 11364-11369 (2006).
  7. Shkriabai, N., et al. Interactions of HIV-1 Gag with assembly cofactors. Biochimica. 45 (13), 4077-4083 (2006).
  8. Vlach, J., Saad, J. S. Trio engagement via plasma membrane phospholipids and the myristoyl moiety governs HIV-1 matrix binding to bilayers. Proc Natl Acad Sci U S A. 110 (9), 3525-3530 (2013).
  9. Anraku, K., et al. Highly sensitive analysis of the interaction between HIV-1 Gag and phosphoinositide derivatives based on surface plasmon resonance. Biochimica. 49 (25), 5109-5116 (2010).
  10. Llewellyn, G. N., Grover, J. R., Olety, B., Ono, A. HIV-1 Gag associates with specific uropod-directed microdomains in a manner dependent on its MA highly basic region. J Virol. 87 (11), 6441-6454 (2013).
  11. Inlora, J., Chukkapalli, V., Derse, D., Ono, A. Gag localization and virus-like particle release mediated by the matrix domain of human T-lymphotropic virus type 1 Gag are less dependent on phosphatidylinositol-(4,5)-bisphosphate than those mediated by the matrix domain of HIV-1 Gag. J Virol. 85 (8), 3802-3810 (2011).
  12. Inlora, J., Collins, D. R., Trubin, M. E., Chung, J. Y., Ono, A. Membrane binding and subcellular localization of retroviral Gag proteins are differentially regulated by MA interactions with phosphatidylinositol-(4,5)-bisphosphate and RNA. MBio. 5 (6), e02202 (2014).
  13. Valentine, K. G., et al. Reverse micelle encapsulation of membrane-anchored proteins for solution NMR studies. Structure. 18 (1), 9-16 (2010).
  14. Dick, R. A., Goh, S. L., Feigenson, G. W., Vogt, V. M. HIV-1 Gag protein can sense the cholesterol and acyl chain environment in model membranes. Proc Natl Acad Sci U S A. 109 (46), 18761-18766 (2012).
  15. Dick, R. A., Kamynina, E., Vogt, V. M. Effect of multimerization on membrane association of Rous sarcoma virus and HIV-1 MA proteins. J Virol. 87 (24), 13598-13608 (2013).
  16. Alfadhli, A., Still, A., Barklis, E. Analysis of human immunodeficiency virus type 1 matrix binding to membranes and nucleic acids. J Virol. 83 (23), 12196-12203 (2009).
  17. Rodriguez, N., Pincet, F., Cribier, S. Giant vesicles formed by gentle hydration and electroformation: a comparison by fluorescence microscopy. Colloids Surf B Biointerfaces. 42 (2), 125-130 (2005).
  18. Needham, D., McIntosh, T. J., Evans, E. Thermomechanical and transition properties of dimyristoylphosphatidylcholine/cholesterol bilayers. Biochimica. 27 (13), 4668-4673 (1988).
  19. Darszon, A., et al. Reassembly of protein-lipid complexes into large bilayer vesicles: perspectives for membrane reconstitution. Proc Natl Acad Sci U S A. 77 (1), 239-243 (1980).
  20. Angelova, M. I., Dimitrov, D. S. Liposome electroformation. Faraday Discuss. Chem. Soc. (81), 303-311 (1986).
  21. Angelova, M. I., Soléau, S., Méléard, P. h., Faucon, F., Bothorel, P. Preparation of giant vesicles by external AC electric fields. Progr Colloid Polymer Sci. 89, 127-131 (1992).
  22. Stachowiak, J. C., et al. Unilamellar vesicle formation and encapsulation by microfluidic jetting. Proc Natl Acad Sci U S A. 105 (12), 4697-4702 (2008).
  23. Yamauchi, S., et al. The consensus motif for N-myristoylation of plant proteins in a wheat germ cell-free translation system. FEBS J. 277 (17), 3596-3607 (2010).
  24. Olety, B., Veatch, S. L., Ono, A. Phosphatidylinositol-(4,5)-Bisphosphate Acyl Chains Differentiate Membrane Binding of HIV-1 Gag from That of the Phospholipase Cdelta1 Pleckstrin Homology Domain. J Virol. 89 (15), 7861-7873 (2015).
  25. Morales-Penningston, N. F., et al. GUV preparation and imaging: minimizing artifacts. Biochim Biophys Acta. 1798 (7), 1324-1332 (2010).
  26. Veatch, S. L. Electro-formation and fluorescence microscopy of giant vesicles with coexisting liquid phases. Methods Mol Biol. 398, 59-72 (2007).
  27. Ayuyan, A. G., Cohen, F. S. Lipid peroxides promote large rafts: effects of excitation of probes in fluorescence microscopy and electrochemical reactions during vesicle formation. Biophys J. 91 (6), 2172-2183 (2006).
  28. Montes, L. R., et al. Electroformation of giant unilamellar vesicles from native membranes and organic lipid mixtures for the study of lipid domains under physiological ionic-strength conditions. Methods Mol Biol. 606, 105-114 (2010).
  29. Olety, B., Ono, A. Roles played by acidic lipids in HIV-1 Gag membrane binding. Virus Res. 193, 108-115 (2014).
  30. Keller, H., Krausslich, H. G., Schwille, P. Multimerizable HIV Gag derivative binds to the liquid-disordered phase in model membranes. Cell Microbiol. 15 (2), 237-247 (2013).
  31. Carlson, L. A., Hurley, J. H. In vitro reconstitution of the ordered assembly of the endosomal sorting complex required for transport at membrane-bound HIV-1 Gag clusters. Proc Natl Acad Sci U S A. 109 (42), 16928-16933 (2012).
  32. Gui, D., et al. A novel minimal in vitro system for analyzing HIV-1 Gag-mediated budding. J Biol Phys. 41 (2), 135-149 (2015).
  33. Prevost, C., et al. IRSp53 senses negative membrane curvature and phase separates along membrane tubules. Nat Commun. 6, 8529 (2015).
check_url/it/54293?article_type=t

Play Video

Citazione di questo articolo
Olety, B., Veatch, S. L., Ono, A. Visualization of HIV-1 Gag Binding to Giant Unilamellar Vesicle (GUV) Membranes. J. Vis. Exp. (113), e54293, doi:10.3791/54293 (2016).

View Video