Summary

通过玻璃表面功能靶细胞提取方法

Published: September 20, 2016
doi:

Summary

This protocol describes customizable surface functionalization of the desthiobiotin, streptavidin, and APTES system in order to isolate specific cell types of interest. In addition, this manuscript covers the applications, optimization, and verification of this process.

Abstract

One of the limiting factors to the adoption and advancement of personalized medicine is the inability to develop diagnostic tools to probe individual nuances in expression from patient to patient. Current methodologies that try to separate cells to fill this niche result in disruption of physiological expression, making the separation technique useless as a diagnostic tool. In this protocol, we describe the functionalization and optimization of a surface for the cellular capture and release. This functionalized surface integrates biotinylated antibodies with a glass surface functionalized with an aminosilane (APTES), desthiobiotin and streptavidin. Cell release is facilitated through the introduction of biotin, allowing the recollection and purification of cells captured by the surface. This release is done through the targeting of the secondary moiety desthiobiotin, which results in a much more gentle release paradigm. This reduction in harsh reagents and shear forces reduces changes in cellular expression. The functionalized surface captures up to 80% of cells in a single cell mixture and has demonstrated 50% capture in a dual-cell mixture. Applications of this technology to xenografts and cancer separation studies are investigated. Quantification techniques for surface verification such as plate reader and ImageJ analyses are described as well.

Introduction

当前台式细胞分离方法( 荧光活化细胞分选1,激光捕获显微解剖2,免疫磁珠分离1)可能需要几个小时的准备和排序的。这些大的时间尺度可影响生理反应和表达水平,导致在不能代表生理反应3的分析。系统需要能够迅速和有效地分离出特定的细胞类型,而为了提高生物医学应用细胞分离和富集破坏细胞表面受体的水平。因此,我们的做法的理由是开发细胞分离温和的做法。

该“芯片实验室”的理念,提供更快的幅度(小时到分钟)细胞分离的订单的承诺,最经常涉及捕捉到细胞表面和释放细胞或细胞内的小故事通过物理4,5 NTS或化学方法6。虽然这些方法提供了一些优点,如鉴定蛋白质7,8-表达,识别RNA表达9-11,或甚至提供用于在体外培养12,13细胞,许多这些技术不能被转换为诊断如细胞受体分析因到它们的非生理环境。酶促起重剂如胶原酶也可影响这些受体数量14,15,这意味着使用这些起重剂不会产生准确的生理数据细胞受体定 ​​量技术。细胞裂解防止分化的原始表面受体之间,以及那些以前内在16。本协议描述了细胞分离快速,轻柔的手法。

Protocol

1.清洁玻璃表面和试剂的准备放置一个玻璃表面在氧等离子体机,在50%的功率进行清洁5分钟。 制作2.5毫升2-%重构(3-氨基丙基)三乙氧基硅烷(APTES)溶液中,加入APTES 50微升并在锥形管2.45毫升乙醇中。 2. APTES和DSB功能化添加APTES溶液到表面。每孔吸取150微升8孔板。每孔移液器将100μl24孔板中。吸取1.1毫升60×15毫米的玻璃菜肴。覆盖表面,防止蒸…

Representative Results

使用该协议,我们表明细胞捕获( 图3A)和MCF7GFP细胞的细胞释放( 图3C)以及活细胞对照( 图4)。我们量化的细胞捕获为60%和80%被释放( 图3C)。当我们扩展这种方法的RAW 264.7巨噬细胞和MCF7GFP细胞的混合物,RAW巨噬细胞的50%被捕获( 图3D)和RAW巨噬细胞有80%是释放用20mM生物素( 图3B)。…

Discussion

在细胞分离技术的进步,进一步加强结构与功能的关系科学的研究在神经科学18,遏制再生生物学血管生物学19单元编程和血管生成的信号。事实上,原代细胞培养20( 例如 ,内皮细胞)在血管生物学主要通过使用细胞分离技术进行。细胞分离最近还被用于细胞膜受体3,14,15,19,21定量流量(qFlow)仪分析。但是,现有的细胞分离方法,影响细胞表面受体的水平…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

We would like to thank the American Cancer Society, Illinois Division (282802) and the National Science Foundation CBET (1512598) for funding support. We also would like to thank Dr. Dianwen Zhang from the University of Illinois Beckman Institute for microscopy training. Finally, we would like to thank Jared Weddell, Stacie Chen, and Spencer Mamer for insightful discussions.

Materials

(3-Aminopropyl) triethoxysilane (APTES) Acros Organics 919-30-2 Used to make 2% APTES solution
Plasma Cleaner Pico Diener Model 1 Cleans surfaces and allows for bonding of PDMS to glass
d-Desthiobiotin (DSB) Sigma D20655 Used as the releasing mechanism in the cellular capture surface.
dimethyl sulfoxide (DMSO) British Drug Houses (BDH) BDH1115-1LP Dissolves the DSB into solution
1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) Thermo-Scientific 5g: 22980
25g: 22981
Activates Carboxylic Acids and allows binding of proteins to glass surface.
uncoated 8-well culture slide BD Falcon Case of 24: 354118
Case of 96: 354108
Used in cellular experiments involving Zeiss fluorescence microscope such as initial capture and release quantification experiments
Glass bottom 24-well plates MatTek P24G-0-13-F Used in cellular experiments involving the plate reader such as antibody and cellular titration experiments
Mercaptoethanol Science Lab 60-24-2 Used to quench reaction between EDC and DSB
4-Morpholinoethanesulfonic acid hydrate
(MES Hydrate 99%)
Fisher Scientific AC172590250 Used to make 0.1 M MES Buffer for use in EDC reaction
Precision Oven Thermo Scientific 11-475-153 Used in curing of PDMS and APTES layer.
Titramax 1000 Shaker Heidolph 13-889-420 Used to ensure even distribution of APTES on surfaces.
1X Streptavidin 5mg
[e7105-5mg]
Proteo Chem 9013-20-1 Biotin-binding protein
May cause irritation
5 cm Glass Dish Fisher Scientific 08748A Used in HUVEC studies as well as future profiling studies.
14 cm Petri Dish with Cover Sigma-Aldrich Z717231 Used to hold samples being functionalized and transport them.
MCF7-GFP cells Cell Biolabs AKR211 Stored in liquid nitrogen
RAW264.7
mouse macrophages
ATCC TIB-71 Gifted to us from Smith lab at the University of Illinois. Stored in liquid nitrogen
TrypLE Life Technologies 12605036 Stored in 100mL at room temperature
Dulbecco’s modified Eagle medium Cell Media Facility at School of Chemical Sciences at UIUC 50003PC Supplier: Corning
Nonessential amino acids Cell Media Facility at School of Chemical Sciences at UIUC 25-025-CI Already added into DMEM by facility.
Supplier: Corning
10% fetal bovine serum Fisher Scientific 03-600-511 Stored in 500mL at < -10⁰C
1% Penicillin–Streptomycin Life Sciences Storeroom at UIUC 17602e Supplier: VWR
Stored in 100 ml at 4⁰C
Cell scraper Fisher Scientific 12-565-58 Small 23cm 50 pack
Cell Dissociation Solution Corning MT-25-056CI Used to lift cells non-enzymatically for the use in cell experiments
Hemacytometer Hausser 02-671-54 Used to count cells for quantification of cell solutions and capture and release effectivity.
Biotin Amresco 58-85-5 Used to release cells from surface.
HBSS Created from Recipe N/A Used to keep cells alive in suspension as well as wash surfaces of non-specific binding. (Adapted from Cold Spring Harbor Protocols): In 500 mL, use 4 g NaCl, .2 g KCl, .0402 g Na2PO4*7H2O, .03 g KH2PO4 and .5 g Glucose. Add DI water to get to 500 mL, filter, and then refrigerate.
HLA-ABC Antibody BioLegend 311402 Antibody used to capture MCF7gfp cells
hIgG Antibody BioLegend HP6017 Antibody used to capture MCF7gfp cells
MCF7 GFP cells Cell Biolabs AKR-211 Luminal Breast Cancer line that has been transfected with green fluorescent protein.
Assorted Conicals Thermo-Scientific 15mL: 12-565-268 50/15 mL plastic conicals for storing solutions and aliquots.
Mini-Tube Rotators (End over End Mixer) Fisher Scientific 05-450-127 Used to incubate antibody and mix other cellular solutions in order to mix
Axiovert 200M (Fluorescence Microscope) Zeiss N/A Zeiss Axiovert 200 M inverted florescence microscope.
Zeba Desalting columns Thermo-Scientific PI-87770 Used to purify newly biotinylated antibodies after the use of the Biotinylation Kit. Instructions provided at: http://www.funakoshi.co.jp/data/datasheet/PCC/89894.pdf
EZ Link Sulfo NHS Low Weight Biotinylation Kit Thermo- Scientific Used to biotinylate antibodies to allow them to integrate with the capture surface
Plate Reader BioTek Synergy HTX Multimode Reader Used to quantitatively measure fluorescent intensity in the titration experiments.

Riferimenti

  1. Erdbruegger, U., Haubitz, M., Woywodt, A. Circulating endothelial cells: a novel marker of endothelial damage. Clin. Chim. Acta. 373 (1-2), 17-26 (2006).
  2. De Spiegelaere, W., Cornillie, P., Van Poucke, M., Peelman, L., Burvenich, C., Van den Broeck, W. Quantitative mRNA expression analysis in kidney glomeruli using microdissection techniques. Histol. Histopathol. 26 (2), 267-275 (2011).
  3. Chen, S., Guo, X., Imarenezor, O., Imoukhuede, P. I. Quantification of VEGFRs, NRP1, and PDGFRs on Endothelial Cells and Fibroblasts Reveals Serum, Intra-Family Ligand, and Cross-Family Ligand Regulation. Cell. Mol. Bioeng. 8 (3), 383-403 (2015).
  4. Cheung, L. S. L., et al. Detachment of captured cancer cells under flow acceleration in a bio-functionalized microchannel. Lab Chip. 9 (12), 1721-1731 (2009).
  5. Privorotskaya, N., et al. Rapid thermal lysis of cells using silicon-diamond microcantilever heaters. Lab Chip. 10 (9), 1135-1141 (2010).
  6. Park, K., Akin, D., Bashir, R. Electrical capture and lysis of vaccinia virus particles using silicon nano-scale probe array. Biomed. Microdevices. 9 (6), 877-883 (2007).
  7. Galletti, G., Sung, M., Vahdat, L. Isolation of breast cancer and gastric cancer circulating tumor cells by use of an anti HER2-based microfluidic device. Lab Chip. 14 (1), 147-156 (2014).
  8. Schudel, B. R., Choi, C. J., Cunningham, B. T., Kenis, P. J. A. Microfluidic chip for combinatorial mixing and screening of assays. Lab Chip. 9 (12), 1676-1680 (2009).
  9. Lien, K. Y., Chuang, Y. H., et al. Rapid isolation and detection of cancer cells by utilizing integrated microfluidic systems. Lab Chip. 10 (21), 2875-2886 (2010).
  10. Stott, S. L., et al. Isolation of circulating tumor cells using a. PNAS. 107 (35), 18392-18397 (2010).
  11. Yu, M., Ting, D., Stott, S., Wittner, B., Ozsolak, F. RNA sequencing of pancreatic circulating tumour cells implicates WNT signalling in metastasis. Nature. 487 (7408), 510-513 (2012).
  12. Sheng, W., Ogunwobi, O., Chen, T., Zhang, J. Capture,+release+and+culture+of+circulating+tumor+cells+from+pancreatic+cancer+patients+using+an+enhanced+mixing+chip.”>>Capture, release and culture of circulating tumor cells from pancreatic cancer patients using an enhanced mixing chip. Lab Chip. 14 (1), 89-98 (2014).
  13. Zheng, X., Cheung, L. S. L., Schroeder, J. A., Jiang, L., Zohar, Y. A high-performance microsystem for isolating circulating tumor cells. Lab Chip. 11 (19), 3269-3276 (2011).
  14. Imoukhuede, P. I., Popel, A. S. Quantification and cell-to-cell variation of vascular endothelial growth factor receptors. Exp. Cell Res. 317 (7), 955-965 (2011).
  15. Imoukhuede, P. I., Popel, A. S. Expression of VEGF receptors on endothelial cells in mouse skeletal muscle. PLoS One. 7 (9), e44791 (2012).
  16. Ludwig, A., Kretzmer, G., Schügerl, K. Determination of a "critical shear stress level" applied to adherent mammalian cells. Enzyme Microb. Technol. 14 (3), 209-213 (1992).
  17. Ansari, A., Lee-Montiel, F. T., Amos, J., Imoukhuede, P. I. Secondary anchor targeted cell release. Biotechnol. Bioeng. 112 (11), 2214-2227 (2015).
  18. Drenan, R. M., Nashmi, R., Imoukhuede, P., Just, H., McKinney, S., Lester, H. A. Subcellular trafficking, pentameric assembly, and subunit stoichiometry of neuronal nicotinic acetylcholine receptors containing fluorescently labeled alpha6 and beta3 subunits. Mol. Pharmacol. 73 (1), 27-41 (2008).
  19. Imoukhuede, P. I., Dokun, A. O., Annex, B. H., Popel, A. S. Endothelial cell-by-cell profiling reveals temporal dynamics of VEGFR1 and VEGFR2 membrane-localization following murine hindlimb ischemia. Am J Physiol Hear. Circ Physiol. 4 (8), H1085-H1093 (2013).
  20. van Beijnum, J. R., Rousch, M., Castermans, K., van der Linden, E., Griffioen, A. W. Isolation of endothelial cells from fresh tissues. Nat. Protoc. 3 (6), 1085-1091 (2008).
  21. Imoukhuede, P. I., Popel, A. S. Quantitative fluorescent profiling of VEGFRs reveals tumor cell and endothelial cell heterogeneity in breast cancer xenografts. Cancer Med. 3 (2), 225-244 (2014).
  22. BD Biosciences. . CD Marker Handbook: Human and Mouse. , (2010).
  23. Tanzeglock, T., Soos, M., Stephanopoulos, G., Morbidelli, M. Induction of mammalian cell death by simple shear and extensional flows. Biotechnol. Bioeng. 104 (2), 360-370 (2009).
  24. Perritt, D., Wong, P., Macpherson, J. L., Henrichsen, K., Symonds, G., Pond, S. . Processing Blood. , (2014).
  25. Fukuda, S., Schmid-Schönbein, G. W. Centrifugation attenuates the fluid shear response of circulating leukocytes. J. Leukoc. Biol. 72 (July), 133-139 (2002).
  26. dela Paz, N. G., Walshe, T. E., Leach, L. L., Saint-Geniez, M., D’Amore, P. A. Role of shear-stress-induced VEGF expression in endothelial cell survival. J. Cell Sci. 125 (Pt 4), 831-843 (2012).
  27. Allard, W. J., et al. Tumor Cells Circulate in the Peripheral Blood of All Major Carcinomas but not in Healthy Subjects or Patients With Nonmalignant Diseases Tumor Cells Circulate in the Peripheral Blood of All Major Carcinomas but not in Healthy Subjects or Patients With Nonmalignant diseases.&#34. Clinical Cancer Research. 10, 6897-6904 (2005).
  28. Nagrath, S., et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 450 (7173), 1235-1239 (2007).
  29. Chen, S., Weddel, J., Gupta, P., Conard, G., Parkin, J., Imoukhuede, P. I. QFlow Cytometer-Based Receptoromic Screening: A High-throughput Quantification Approach Informing Biomarker Selection and Nanosensor. Submiss. , (2016).
  30. Vasa, M., et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ. Res. 89 (1), E1-E7 (2001).
  31. Hirsch, J. D., Eslamizar, L., et al. Easily reversible desthiobiotin binding to streptavidin, avidin, and other biotin-binding proteins: uses for protein labeling, detection, and isolation. Anal. Biochem. 308 (2), 343-357 (2002).
  32. Wilchek, M., Bayer, E. A. Applications of Avidin-Biotin Technology: Literature Survey. Methods Enzymol. 152 (1), 183-189 (1987).
  33. Wu, X., et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21 (1), 41-46 (2002).
  34. Lee-Montiel, F. T., Imoukhuede, P. I. Engineering quantum dot calibration standards for quantitative fluorescent profiling. J. Mater. Chem. B. 1, 6434 (2013).
  35. Hornes, E., Korsnes, L. . Oligonucleotide-linked magnetic particles and uses thereof. , (1996).
  36. Naranbhai, V., et al. Impact of blood processing variations on natural killer cell frequency, activation, chemokine receptor expression and function. J. Immunol. Methods. 366 (1-2), 28-35 (2011).
  37. Yadav, A. R., Sriram, R., Carter, J. A., Miller, B. L. Comparative study of solution-phase and vapor-phase deposition of aminosilanes on silicon dioxide surfaces. Mater. Sci. Eng. C. 35 (1), 283-290 (2014).
check_url/it/54315?article_type=t

Play Video

Citazione di questo articolo
Ansari, A., Patel, R., Schultheis, K., Naumovski, V., Imoukhuede, P. I. A Method of Targeted Cell Isolation via Glass Surface Functionalization. J. Vis. Exp. (115), e54315, doi:10.3791/54315 (2016).

View Video