Summary

肿瘤微环境的模仿:产生富集的细胞群及侦查间通讯的简单方法

Published: September 20, 2016
doi:

Summary

We adapted a permeable microporous membrane insert to mimic the tumor microenvironment (TME). The model consists of a mixed cell culture, allows simplified generation of highly enriched individual cell populations without using fluorescent tagging or cell sorting, and permits studying intercellular communication within the TME under normal or stress conditions.

Abstract

了解肿瘤细胞和周围非癌性基质之间的早期异型相互作用是阐明导致基质激活和建立肿瘤微环境(TME)的事件非常重要的。几个在体外 TME的体内模型已经开发;然而,在一般情况这些模型不容易允许个别的细胞群的分离,非扰动的条件下,进行进一步的研究。为了避免这个困难,我们使用由可渗透微孔膜插入件,其允许简单代高度富集的细胞群的紧密生长,但单独的一个细胞生长衬底采用体外 TME模型,对用于扩展共插入的膜的任一侧 – 文化时代。通过使用这种模式,我们能够产生极大的丰富癌相关成纤维细胞(CAF)的正常二倍体人成纤维细胞的人口以下共培养(120小时)与高转移人乳腺癌细胞,而无需使用荧光标记和/或细胞分选的。此外,通过调节刀片的孔隙大小,就可以控制两个异型细胞群体之间细胞间的通信( 例如 ,间隙连接通讯,分泌的因子)的模式,它允许的发展基础的机制的调查TME,包括间隙连接渗透性的作用。该模型可作为在增强我们最初的事件导致癌症基质开始时,TME的早期演化,和基质对肿瘤细胞对治疗剂的应答的调节作用的理解的宝贵工具。

Introduction

肿瘤微环境(TME)是由该共存和进化旁边宿主基质癌细胞的高度复杂的系统。此基质组分通常由成纤维细胞,肌成纤维细胞,内皮细胞,各种免疫组件,以及细胞外基质1。一个显著组分,往往大部分这种基质,被激活的成纤维细胞,经常被称为癌症相关的成纤维细胞或癌相关成纤维细胞(CAF)2,3-。不同于正常的,未活化的成纤维细胞,的CAF有助于肿瘤发生,发展,血管生成,侵入,转移和复发4-11在多种癌,包括乳腺癌,前列腺癌,肺癌,胰腺癌,皮肤癌,结肠癌,食道癌,和卵巢5,6,12-17。然而,CAF的整个发病机制的贡献的确切性质仍然不好界定。此外,临床证据已证明的CAF的预后价值,他们的存在以高品位的恶性肿瘤,治疗失败,和总体预后较差10,18,19相关。

显然,增强我们在CAF发展的始发事件,以及细胞间通讯介导的TME内的作用的理解,可以提供能改善患者的治疗效果令人兴奋的新治疗靶点和增强策略。为实现这一目标,一些体内体外模型已经制定出来。而在体内的方法是多个反射病人TME的,它们具有局限性,包括内和肿瘤之间的巨大复杂性和非均质性。此外,从人类受试者的肿瘤样本通常代表着高度发达的TME和不允许TME始发事件的理解。实验动物研究提供了一定的优势,但动物数据对人类的概括应该谨慎进行,由于在physi差异人类和动物如啮齿动物( 例如,硫醇化学20,代谢速率21,胁迫耐受性22 )之间易学。此外,与人类群体,它在本质上是遗传异质性,实验室动物通常饲养至均一。另外,通常难以检查瞬时生理变化和细胞表型的变化,以及以控制如啮齿类使用动物特定的实验参数。因此, 在体外 2-和3-维(2D和3D)的组织培养模型经常用于推进TME发展的基本理解。尽管他们缺乏体内系统的复杂性的准确写照,这些模型提供了极大的方便机理研究的优势, 在体外模型允许TME更简化,重点突出,具有成本效益的分析,即统计显著数据可以被生成在细胞免费的动物出现的系统性的变化。

有几个品种在体外系统。两种最常用的TME 体外模型由混合单层或球体的细胞培养物。两种培养方法对于细胞间的相互作用( 例如,正常细胞与肿瘤细胞)和用于各种TME特定细胞表型的变化进行分析的基础研究有利( 例如 ,从正常成纤维细胞癌相关成纤维细胞的出现)。此外,该球状体是能够创建TME的多个反射组织样结构,并且可以是代表性的肿瘤的异质性23。然而球体往往会产生跨层广泛变化的氧张力梯度,这可能复杂化实验的结论24。不幸的是,这两款车型在他们的隔离作进一步鉴定和研究以下共同的纯细胞群的能力是极其有限文化。这样做将需要至少一种细胞类型是荧光标记的或具有一个识别制造者标记,然后使该混合共培养来大量处理和细胞分选来分离细胞群。而细胞分选仪能够分离出,而纯的细胞群,其中一个必须认识到细胞应激和可能的微生物污染的风险25。

为了促进细胞间通讯的理解,伟大的努力,一直致力于对发展和体外系统紧密模拟体内环境,同时允许一个简化的方法进行优化。一个这样的工具是渗透微孔插入,这是第一次在1953年26研制并随后适用于不同的应用和研究( 细胞极性27,内吞28,运输毒品29,组织建模30,叔膜基材ilization 31,旁观者效应32,33 )。这个系统允许在体内样解剖和功能分化的细胞在体内的生长,以及许多的表达标记物未观察到当在不可渗透的塑料制品培养34,35。此外,极薄的多孔膜(10微米厚)允许分子和平衡时间的快速扩散,它模拟体内环境,并允许在两个顶端和基底外侧细胞结构域独立蜂窝运作。插入件的效用作为TME系统的一个附加的优点是上生长在相同的环境条件下在膜的两侧的两个异型细胞群的其物理分离,同时保持通过膜孔间通讯的各种模式。虽然物理上分开,这两个细胞群体的代谢经由分泌的元件联接,正如日这里刻划,也可以通过间隙交界的通道。此外,通过保持在体内局部氧气张力(PO 2)的插入,该模型可以减少在其他系统中观察到的氧气和化学梯度的并发症。相反,它增加了自然机制控制TME的理解。值得注意的是,这两个细胞群体可容易地以高纯度分离,没有荧光标记和/或细胞分选共培养后的长时间。

在这里,我们通过膜孔描述由人乳腺癌细胞和生长,分别在一个可渗透微孔膜插入件的任一侧人成纤维细胞的体外 TME协议,但还没有在连续的双向通信。我们表明,通过使用膜不同孔径,特定类型的细胞间通讯的贡献( 例如 ,分泌的因子与间隙连接)到显影在TME可以进行调查。

Protocol

1.文化传媒和细胞的制备制成500毫升之Eagle氏最低必需补充有12.5%(体积/体积)热灭活的胎牛血清(FBS),100单位青霉素培养基,2mM的L-丙氨酰-L-谷氨酰胺和的和每毫升100微克的链霉素。 注:生长培养基和补充物(多个)可以为其它的细胞株或细胞系的生长要求很容易地交换。 制备70微升细胞培养基的每个插入物(6孔格式插入):Eagle氏最低必需培养基补充有50%(体积/体积?…

Representative Results

在这里,我们适于可渗透微孔膜插入物来开发模仿体内肿瘤微环境( 图1) 在体外异型细胞共培养体系。该系统允许在插入的多孔性膜的任一侧待生长的时间过长(高达120小时,在我们的使用)两个不同的细胞群体。重要的是,系统能够保持细胞群的纯度,如通过对0.4〜,1-或3间孔隙刀片的顶侧镀GFP标记的MDA-MB-231细胞,并允许它们生长中测定共?…

Discussion

此处所描述的协议是简单的, 在体外过程适应( 图1),其利用一个可渗透微孔膜插入物,以产生从异型细胞的共培养高度富集个体的细胞群。显著,该模型适用于研究细胞间通讯的各种模式。的关键步骤包括选择适当的孔径插入特定实验利息(多个),在补充有50%FBS的培养基中插入件的底侧播种所述第一细胞群上的顶侧接种第二细胞群插入,并共培养两种不同的细胞群的时…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This research was supported by grants from the New Jersey Commission on Cancer Research (Pre-Doctoral Fellowship DFHS13PPCO17), the National Institutes of Health (CA049062), and the National Aeronautics and Space Administration (NNX15AD62G).

Materials

For Cell Culture
AG01522 (i.e., AG1522) human diploid fibroblast Coriell 107661 Passage 8-13
MDA-MB-231-luc-D3H1 breast adenocarcinoma cell line PerkinElmer 119261 Parental line: ATCC (#HTB-26)
MDA-MB-231/GFP breast adenocarcinoma cell line Cell Biolabs AKR-201
Eagle's minimal essential medium (MEM) Corning Cellgro 15-010-CV
Fetal Bovine Serum (FBS), Qualified Sigma F6178-500mL
Corning Glutagro Supplement (200mM L-alanyl-L-glutamine) Corning Cellgro 25-015-Cl
Penicillin Streptomycin Solution, 100X Corning Cellgro 30-002-Cl
Transwell Insert (i.e., permeable microporous membrane insert) (0.4 μm pore) Costar 3450
Transwell Insert (i.e., permeable microporous membrane insert) (1 μm pore) Greiner bio-one 657610
Transwell Insert (i.e., permeable microporous membrane insert) (3 μm pore) Costar 3452
6-well Culture Plate Greiner Bio-One Cellstar 657160-01
75 cm2 cell culture flask CellStar 658 170
Phosphate-Buffered Saline (PBS), 1X Corning Cellgro 21-040-CV without calcium & magnesium
0.25% (vol/vol) Trypsin, 2.21 mM EDTA, 1X Corning Cellgro 25-053-Cl
15 mL Centrifuge Tube CellTreat 229411
35 x 10 mm Cell Culture Dish Greiner bio-one 627 160
Name Company Catalog Number Comments
For Immunofluorescent Microscopy
Mouse anti-Caveolin 1 BD Transduction Laboratories 610406 In situ Immunofluorescence – 1:5000
Goat anti-Mouse IgG (H+L) Secondary Antibody, Alexa Fluor 488 conjugate ThermoFisher Scientific A-11029 In situ Immunofluorescence – 1:2000
Bovine Serum Albumin – Fraction V Rockland BSA-50 Immunoglobulin and protease free
16% (wt/vol) Formaldehyde Solution ThermoFisher Scientific 28908 Dilute to 4% with 1X PBS
Premium Cover Glass (22×22 mm No.1) Fisher 12548B
Triton X-100 Sigma T8787-50ML
SlowFade Gold antifade reagent with DAPI Invitrogen S36938
Name Company Catalog Number Comments
For Flow Cytometric Analysis
Calcein, AM Molecular Probes C3100MP
Hanks' Balanced Salt Solution (HBSS) Gibco 14025-076
Name Company Catalog Number Comments
For Western Blot Analysis
Mouse anti-Caveolin 1 BD Transduction Laboratories 610406 Western Blot – 1:10000
Tween-20 BioRad 170-6531
Nitrocellulose Membrane (0.2 μm) BioRad 162-0112
Western Lightning Plus-ECL PerkinElmer NEL104001EA
BioRad DC Protein Assay BioRad 500-0116
Sodium dodecyl sulfate (SDS) BioRad 161-0302
Sodium deoxycholate monohydrate (DOC) Sigma D5670
IGEPAL CA-630 (NP40) Sigma I8896
30% Acrylamide/Bis Solution, 37.5:1 BioRad 161-0158

Riferimenti

  1. Hanahan, D., Weinberg, R. A. The hallmarks of cancer. Cell. 100 (1), 57-70 (2000).
  2. Olive, K. P., Jacobetz, M. A., et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 324 (5933), 1457-1461 (2009).
  3. Pandol, S., Edderkaoui, M., Gukovsky, I., Lugea, A., Gukovskaya, A. Desmoplasia of pancreatic ductal adenocarcinoma. Clinical Gastroenterology and Hepatology: the Official Clinical Practice. Journal of the American Gastroenterological Association. 7 (11 Suppl), S44-S47 (2009).
  4. Dabbous, M. K., Haney, L., Carter, L. M., Paul, A. K., Reger, J. Heterogeneity of fibroblast response in host-tumor cell-cell interactions in metastatic tumors. Journal of Cellular Biochemistry. 35 (4), 333-344 (1987).
  5. Olumi, A. F., Grossfeld, G. D., Hayward, S. W., Carroll, P. R., Tlsty, T. D., Cunha, G. R. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Ricerca sul cancro. 59 (19), 5002-5011 (1999).
  6. Orimo, A., Gupta, P. B., et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 121 (3), 335-348 (2005).
  7. Schürch, W., Seemayer, T. A., Lagacé, R., Gabbiani, G. The intermediate filament cytoskeleton of myofibroblasts: an immunofluorescence and ultrastructural study. Virchows Archiv. A, Pathological Anatomy and Histopathology. 403 (4), 323-336 (1984).
  8. Nakagawa, H., Liyanarachchi, S., et al. Role of cancer-associated stromal fibroblasts in metastatic colon cancer to the liver and their expression profiles. Oncogene. 23 (44), 7366-7377 (2004).
  9. Choi, Y. P., Lee, J. H., et al. Cancer-associated fibroblast promote transmigration through endothelial brain cells in three-dimensional in vitro models. International Journal of Cancer. Journal International du Cancer. 135 (9), 2024-2033 (2014).
  10. Ito, M., Ishii, G., Nagai, K., Maeda, R., Nakano, Y., Ochiai, A. Prognostic impact of cancer-associated stromal cells in patients with stage I lung adenocarcinoma. Chest. 142 (1), 151-158 (2012).
  11. Gaggioli, C., Hooper, S., et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nature Cell Biology. 9 (12), 1392-1400 (2007).
  12. Navab, R., Strumpf, D., et al. Prognostic gene-expression signature of carcinoma-associated fibroblasts in non-small cell lung cancer. Proceedings of the National Academy of Sciences of the United States of America. 108 (17), 7160-7165 (2011).
  13. Hwang, R. F., Moore, T., et al. Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Ricerca sul cancro. 68 (3), 918-926 (2008).
  14. Sneddon, J. B., Zhen, H. H., et al. Bone morphogenetic protein antagonist gremlin 1 is widely expressed by cancer-associated stromal cells and can promote tumor cell proliferation. Proceedings of the National Academy of Sciences of the United States of America. 103 (40), 14842-14847 (2006).
  15. De Wever, O., Nguyen, Q. -. D., et al. Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology. 18 (9), 1016-1018 (2004).
  16. Zhang, C., Fu, L., et al. Fibroblast growth factor receptor 2-positive fibroblasts provide a suitable microenvironment for tumor development and progression in esophageal carcinoma. Clinical Cancer Research. 15 (12), 4017-4027 (2009).
  17. Yao, Q., Qu, X., Yang, Q., Wei, M. CLIC4 mediates TGF-β1-induced fibroblast-to-myofibroblast transdifferentiation in ovarian cancer. Oncology Reports. , (2009).
  18. Crawford, Y., Kasman, I., et al. PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell. 15 (1), 21-34 (2009).
  19. Paulsson, J., Micke, P. Prognostic relevance of cancer-associated fibroblasts in human cancer. Seminars in Cancer Biology. 25, 61-68 (2014).
  20. Messina, J. P., Lawrence, D. A. Effects of 2-mercaptoethanol and buthionine sulfoximine on cystine metabolism by and proliferation of mitogen-stimulated human and mouse lymphocytes. International Journal of Immunopharmacology. 14 (7), 1221-1234 (1992).
  21. Ames, B. N. Endogenous oxidative DNA damage, aging, and cancer. Free Radical Research Communications. 7 (3-6), 121-128 (1989).
  22. Cheng, Y., Ma, Z., et al. Principles of regulatory information conservation between mouse and human. Nature. 515 (7527), 371-375 (2014).
  23. Upreti, M., Jamshidi-Parsian, A., et al. Tumor-endothelial cell three-dimensional spheroids: new aspects to enhance radiation and drug therapeutics. Translational Oncology. 4 (6), 365-376 (2011).
  24. Mehta, G., Hsiao, A. Y., Ingram, M., Luker, G. D., Takayama, S. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. Journal of Controlled Release: Official Journal of the Controlled Release Society. 164 (2), 192-204 (2012).
  25. Muraki, Y., Hongo, S., Ohara, Y. Contamination of the cell sorter fluidics system with the water-borne bacterium Burkholderia cepacia. Cytometry. Part A: the Journal of the International Society for Analytical Cytology. 81 (2), 105-107 (2012).
  26. Grobstein, C. Morphogenetic interaction between embryonic mouse tissues separated by a membrane filter. Nature. 172 (4384), 869-870 (1953).
  27. Tan, S., Tompkins, L. S., Amieva, M. R. Helicobacter pylori usurps cell polarity to turn the cell surface into a replicative niche. PLoS Pathogens. 5 (5), e1000407 (2009).
  28. Hyman, T., Shmuel, M., Altschuler, Y. Actin is required for endocytosis at the apical surface of Madin-Darby canine kidney cells where ARF6 and clathrin regulate the actin cytoskeleton. Molecular Biology of the Cell. 17 (1), 427-437 (2006).
  29. Ghaffarian, R., Muro, S. Models and methods to evaluate transport of drug delivery systems across cellular barriers. Journal of Visualized Experiments : JoVE. (80), e50638 (2013).
  30. Braian, C., Svensson, M., Brighenti, S., Lerm, M., Parasa, V. R. A 3D human lung tissue model for functional studies on mycobacterium tuberculosis infection. Journal of Visualized Experiments : JoVE. (104), e53084 (2015).
  31. Bath, M. L. Inhibition of in vitro fertilizing capacity of cryopreserved mouse sperm by factors released by damaged sperm, and stimulation by glutathione. PLoS ONE. 5 (2), e9387 (2010).
  32. Zhao, Y., De Toledo, S. M., Hu, G., Hei, T. K., Azzam, E. I. Connexins and cyclooxygenase-2 crosstalk in the expression of radiation-induced bystander effects. British Journal of Cancer. 111 (1), 125-131 (2014).
  33. Buonanno, M., de Toledo, S. M., Azzam, E. I. Increased frequency of spontaneous neoplastic transformation in progeny of bystander cells from cultures exposed to densely ionizing radiation. PLoS ONE. 6 (6), e21540 (2011).
  34. Byers, S. W., Hadley, M. A., Djakiew, D., Dym, M. Growth and characterization of polarized monolayers of epididymal epithelial cells and Sertoli cells in dual environment culture chambers. Journal of Andrology. 7 (1), 59-68 (1986).
  35. Pitt, A., Gabriels, J. Epithelial cell culture on microporous membranes. American Biotechnology Laboratory. 4 (5), 38-45 (1986).
  36. Buonanno, M., de Toledo, S. M., Pain, D., Azzam, E. I. Long-term consequences of radiation-induced bystander effects depend on radiation quality and dose and correlate with oxidative stress. Radiation Research. 175 (4), 405-415 (2011).
  37. Ducrest, A. -. L., Amacker, M., Lingner, J., Nabholz, M. Detection of promoter activity by flow cytometric analysis of GFP reporter expression. Nucleic Acids Research. 30 (14), e65 (2002).
  38. Mercier, I., Casimiro, M. C., Wang, C. Human breast cancer-associated fibroblasts (CAFs) show caveolin-1 down-regulation and RB tumor suppressor functional inactivation: implications for the response to hormonal therapy. Cancer Biology & Therapy. , (2008).
  39. Martinez-Outschoorn, U. E., Pavlides, S., et al. Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: implications for breast cancer and DCIS therapy with autophagy inhibitors. Cell Cycle. 9 (12), 2423-2433 (2010).
  40. Witkiewicz, A. K., Dasgupta, A., et al. Loss of stromal caveolin-1 expression predicts poor clinical outcome in triple negative and basal-like breast cancers. Cancer Biology & Therapy. 10 (2), 135-143 (2014).
  41. Zhao, X., He, Y., et al. Caveolin-1 expression level in cancer associated fibroblasts predicts outcome in gastric cancer. PLoS ONE. 8 (3), e59102 (2013).
  42. Shaul, P. W., Anderson, R. G. Role of plasmalemmal caveolae in signal transduction. The American Journal of Physiology. 275 (5 Pt 1), L843-L851 (1998).
  43. Fujimoto, T., Kogo, H., Nomura, R., Une, T. Isoforms of caveolin-1 and caveolar structure. Journal of Cell Science. 113 (Pt 19), 3509-3517 (2000).
  44. Wartiovaara, J., Lehtonen, E., Nordling, S., Saxen, L. Do Membrane Filters prevent Cell Contacts. Nature. 238 (5364), 407-408 (1972).
  45. Tyan, S. -. W., Kuo, W. -. H., et al. Breast cancer cells induce cancer-associated fibroblasts to secrete hepatocyte growth factor to enhance breast tumorigenesis. PLoS ONE. 6 (1), e15313 (2011).
  46. Xu, J., Lu, Y., Qiu, S., Chen, Z. -. N., Fan, Z. A novel role of EMMPRIN/CD147 in transformation of quiescent fibroblasts to cancer-associated fibroblasts by breast cancer cells. Cancer Letters. 335 (2), 380-386 (2013).
  47. Hoffman, R. M. Stromal-cell and cancer-cell exosomes leading the metastatic exodus for the promised niche. Breast Cancer Research : BCR. 15 (3), 310 (2013).
  48. Franco, O. E., Shaw, A. K., Strand, D. W., Hayward, S. W. Cancer associated fibroblasts in cancer pathogenesis. Seminars in Cell & Developmental Biology. 21 (1), 33-39 (2010).
  49. Kuse, R., Schuster, S., Schübbe, H., Dix, S., Hausmann, K. Blood lymphocyte volumes and diameters in patients with chronic lymphocytic leukemia and normal controls. Blut. 50 (4), 243-248 (1985).
  50. Vaupel, P., Schlenger, K., Knoop, C., Höckel, M. Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Ricerca sul cancro. 51 (12), 3316-3322 (1991).
check_url/it/54429?article_type=t

Play Video

Citazione di questo articolo
Domogauer, J. D., de Toledo, S. M., Azzam, E. I. A Mimic of the Tumor Microenvironment: A Simple Method for Generating Enriched Cell Populations and Investigating Intercellular Communication. J. Vis. Exp. (115), e54429, doi:10.3791/54429 (2016).

View Video