Summary

保护疗效及肺部免疫反应皮下和鼻内BCG管理在小鼠

Published: September 19, 2016
doi:

Summary

We herein detail the methodology followed to compare protective efficacy and lung immune response induced by intranasal and subcutaneous immunization with BCG in mouse model. Our results show the benefits of pulmonary vaccination and suggest a role for IL17-mediated response in vaccine-induced protection.

Abstract

Despite global coverage of intradermal BCG vaccination, tuberculosis remains one of the most prevalent infectious diseases in the world. Preclinical data have encouraged pulmonary tuberculosis vaccines as a promising strategy to prevent pulmonary disease, which is responsible for transmission. In this work, we describe the methodology used to demonstrate in the mouse model the benefits of intranasal BCG vaccination when compared to subcutaneous. Our data revealed greater protective efficacy following intranasal BCG administration. In addition, our results indicate that pulmonary vaccination triggers a higher immune response in lungs, including Th1 and Th17 responses, as well as an increase of immunoglobulin A (IgA) concentration in respiratory airways. Our data show correlation between protective efficacy and the presence of IL17-producing cells in lungs post-Mycobacterium tuberculosis challenge, suggesting a role for this cytokine in the protective response conferred by pulmonary vaccination. Finally, we detail the global workflow we have developed to study respiratory vaccination in the mouse model, which could be extrapolated to other tuberculosis vaccines, apart from BCG, targeting the mucosal response or other pulmonary routes of administration such as the intratracheal or aerosol.

Introduction

结核病(TB)是全球领先的传染性疾病导致性比HIV相关的死亡在世界之一,耐多药菌株的增加上升相结合,使得TB惊人的全球性健康问题1。新的诊断工具,更有效和毒性较小的药物,以及新的安全和有效的结核病疫苗的迫切需要,特别是在发展中世界。

减毒活卡介苗(BCG)是目前预防结核病,已在皮内诞生以来全球20世纪70年代给予唯一的持牌疫苗。卡介苗被认为是有效地防止儿童疾病(脑膜炎和粟粒TB)的严重形式,但已经显示出对负责疾病变速 ​​器2的肺结核功效不一致。

肺接种疫苗,它模仿结核感染的自然路线,代表了当地引发宿主的免疫反应有吸引力的方法秒。在这点上,相比于皮下或皮内途径3-6在不同的有关结核的动物模型的各种临床前工作已经证明以下肺免疫更大疫苗效力。尽管如此,通过肺接种引发的保护机制尚不十分清楚。在过去的几年中,一些作品指着具体TB-粘膜免疫应答的重要因子IL17介导的反应,如在缺陷的IL17粘膜疫苗诱导的保护效力小鼠模型受损7,8。

最近,我们展示的第一次鼻内BCG管理保护的DBA / 2鼠标,鼠标应变特点是皮下BCG免疫后9缺乏保护的。这些结果表明,呼吸道结核疫苗可以减少在流行国家,皮内BCG被认为是对pulmon无效结核病率更有效元TB。

Protocol

所有小鼠保持在受控条件下和对疾病的任何迹象观察。试点工作是在与欧洲和国家指令实验动物保护,并与主管地方伦理委员会批准同意进行。 1. BCG丹麦的量化甘油股票和结核 分枝杆菌的制备注:所有所述的协议进行BSL3条件下进行。 BCG丹麦或分枝杆菌H37Rv菌株的解冻冷冻甘油股票和在10ml 7H9介质10补充有吐温80 0.05%(…

Representative Results

这部作品描述了BCG给药两种途径的比较:皮下和鼻内。皮下途径是可比的皮内,这是全世界的卡介苗目前临床路径。疫苗接种的鼻内途径旨在模仿M的感染的天然途径肺结核 ,目标是直接诱导免疫反应在肺,这种病原体的主要靶器官。 图1描述了工作流程遵循。八到十周龄的雌性DBA / 2小鼠用10 6</su…

Discussion

Although current vaccine against tuberculosis, BCG, is the most widely administered vaccine in history, tuberculosis remains one of the leading causes of death and morbidity from infectious diseases worldwide. This paradox is explained by the lack of protection of this vaccine against pulmonary tuberculosis, the responsible form of transmission. New vaccination approaches effective against pulmonary forms of the disease are urgently needed, as they would have the greatest impact on disease transmission globally.

<p c…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This work was supported by “Spanish Ministry of Economy and Competitiveness” [grant number BIO2014-5258P], “European Commission” by the H2020 programs [grant numbers TBVAC2020 643381].

Materials

Middlebrook 7H9 broth BD 271310
Middlebrook ADC Enrichment BD 211887
Tween 80 Scharlau TW00800250
3-mm diameter Glass Beads Scharlau 038-138003
Middlebrook 7H10 Agar BD 262710
1-ml syringe 26GA 0.45×10 mm BD 301358
GentleMACS dissociator Miltenyi Biotec 130-093-235
C tubes Miltenyi Biotec 130-093-237
M tubes Miltenyi Biotec 130-093-236
Collagenase D Roche 11088882001
DNaseI Applichem A3778,0100
Falcon 70µm Cell Strainer Corning 352350
RPMI 1640 Sigma R0883
Red Blood Cell Lysing Buffer Sigma R7757
GlutaMAX Supplement Gibco 35050-061 100X concentrated
Penicillin-Streptomycin Solution Sigma P4333 100X concentrated
Fetal Calf Serum Biological Industries 04-001-1A
2-Mercaptoethanol Sigma M3148-25ML
Scepter 2.0 Handheld Automated Cell Counter Millipore PHCC20040
Scepter Cell Counter Sensors, 40 µm Millipore PHCC40050
Mycobacterium Tuberculosis – Tuberculin PPD Statens Serum Institut (SSI) 2390
Mouse IFN-γ ELISA development kit  Mabtech 3321-1H
Mouse IL17A ELISA development kit  Mabtech 3521-1H
Brefeldin A Sigma B7651
FITC Rat Anti-Mouse CD4 BD 553047
BD Cytofix/Cytoperm Kit BD 555028
APC-Cy7 Rat Anti-mouse IL-17A BD 560821
APC Mouse Anti-mouse IFNg BD 554413
LACHRYMAL OLIVE LUER LOCK 0.60 x 30 mm. 23G x 1 1/4” UNIMED 27.134 Used as trachea cannula for BAL
high-protein binding polystyrene flat-bottom 96-well plates MAXISORP NUNC 430341
Albumin, from bovine serum Sigma A4503
Goat Anti-Mouse IgA (α-chain specific)−Peroxidase antibody Sigma A4789
3,3′,5,5′-Tetramethylbenzidine (TMB)  Sigma T0440
MyTaq DNA Polymerase Bioline BIO-21107 The kit Includes Buffer 5x

Riferimenti

  1. Zumla, A., et al. The WHO 2014 global tuberculosis report–further to go. Lancet Glob Health. 3 (1), e10-e12 (2015).
  2. Mangtani, P., et al. Protection by BCG vaccine against tuberculosis: a systematic review of randomized controlled trials. Clin Infect Dis. 58 (4), 470-480 (2014).
  3. Aguilo, N., et al. Pulmonary Mycobacterium bovis BCG vaccination confers dose-dependent superior protection compared to that of subcutaneous vaccination. Clin Vaccine Immunol. 21 (4), 594-597 (2014).
  4. Chen, L., Wang, J., Zganiacz, A., Xing, Z. Single intranasal mucosal Mycobacterium bovis BCG vaccination confers improved protection compared to subcutaneous vaccination against pulmonary tuberculosis. Infect Immun. 72 (1), 238-246 (2004).
  5. Giri, P. K., Verma, I., Khuller, G. K. Protective efficacy of intranasal vaccination with Mycobacterium bovis BCG against airway Mycobacterium tuberculosis challenge in mice. J Infect. 53 (5), 350-356 (2006).
  6. Lagranderie, M., et al. BCG-induced protection in guinea pigs vaccinated and challenged via the respiratory route. Tuber Lung Dis. 74 (1), 38-46 (1993).
  7. Gopal, R., et al. Interleukin-17-dependent CXCL13 mediates mucosal vaccine-induced immunity against tuberculosis. Mucosal Immunol. 6 (5), 972-984 (2013).
  8. Khader, S. A., et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol. 8 (4), 369-377 (2007).
  9. Aguilo, N., et al. Pulmonary but Not Subcutaneous Delivery of BCG Vaccine Confers Protection to Tuberculosis-Susceptible Mice by an Interleukin 17-Dependent Mechanism. J Infect Dis. , (2015).
  10. Middlebrook, G., Cohn, M. L. Bacteriology of tuberculosis: laboratory methods. Am J Public Health Nations Health. 48 (7), 844-853 (1958).
  11. Brosch, R., et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A. 99 (6), 3684-3689 (2002).
  12. Kaushal, D., et al. Mucosal vaccination with attenuated Mycobacterium tuberculosis induces strong central memory responses and protects against tuberculosis. Nat Commun. 6, 8533 (2015).
  13. Lochhead, J. J., Thorne, R. G. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 64 (7), 614-628 (2012).
  14. Lochhead, J. J., Wolak, D. J., Pizzo, M. E., Thorne, R. G. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. J Cereb Blood Flow Metab. 35 (3), 371-381 (2015).
  15. Griffiths, K. L., et al. Cholera toxin enhances vaccine-induced protection against Mycobacterium tuberculosis challenge in mice. PLoS One. 8 (10), e78312 (2013).
  16. Hirota, K., et al. Plasticity of Th17 cells in Peyer’s patches is responsible for the induction of T cell-dependent IgA responses. Nat Immunol. 14 (4), 372-379 (2013).
  17. Jaffar, Z., Ferrini, M. E., Herritt, L. A., Roberts, K. Cutting edge: lung mucosal Th17-mediated responses induce polymeric Ig receptor expression by the airway epithelium and elevate secretory IgA levels. J Immunol. 182 (8), 4507-4511 (2009).
check_url/it/54440?article_type=t

Play Video

Citazione di questo articolo
Uranga, S., Marinova, D., Martin, C., Aguilo, N. Protective Efficacy and Pulmonary Immune Response Following Subcutaneous and Intranasal BCG Administration in Mice. J. Vis. Exp. (115), e54440, doi:10.3791/54440 (2016).

View Video