Summary

一个水溶性金属 - 有机络合物阵列合成

Published: October 08, 2016
doi:

Summary

A potential general method for the synthesis of water-soluble multimetallic peptidic arrays containing a predetermined sequence of metal centers is presented.

Abstract

We demonstrate a method for the synthesis of a water-soluble multimetallic peptidic array containing a predetermined sequence of metal centers such as Ru(II), Pt(II), and Rh(III). The compound, named as a water-soluble metal-organic complex array (WSMOCA), is obtained through 1) the conventional solution-chemistry-based preparation of the corresponding metal complex monomers having a 9-fluorenylmethyloxycarbonyl (Fmoc)-protected amino acid moiety and 2) their sequential coupling together with other water-soluble organic building units on the surface-functionalized polymeric resin by following the procedures originally developed for the solid-phase synthesis of polypeptides, with proper modifications. Traces of reactions determined by mass spectrometric analysis at the representative coupling steps in stage 2 confirm the selective construction of a predetermined sequence of metal centers along with the peptide backbone. The WSMOCA cleaved from the resin at the end of stage 2 has a certain level of solubility in aqueous media dependent on the pH value and/or salt content, which is useful for the purification of the compound.

Introduction

复杂分子结构的控制合成一直是合成化学的一个重大问题。从这个观点来看,以合成多核异金属配合物在一个可设计方式仍然是一个值得受试者中,因为通常用于从基配体的金属化的方法可能的结构的结果的数字无机化学领域中受到挑战编制单体金属配合物。虽然多核异金属配合物的几个例子迄今1,2,3报道,试验和错误或它们的合成的艰巨性就必须一个简单的方法,该方法适用于大范围的结构的的发展。

作为一种新的方法来解决这个问题,在2011年,我们报道了合成方法4,5在具有Fmoc保护氨基酸部分单核的各种金属络合物依次偶合,得到多通过固相多肽合成6的协议金属肽阵列。由于多肽合成的连续性质,多个金属中心的特定序列是通过控制那些金属络合物单体的偶联反应的数量和顺序合理设计性。以后,该方法进一步模块化通过用两个较短的阵列7之间的共价键相结合,使各种更大和/或支链的阵列结构。

在这里,我们将展示如何这样多金属肽阵列的合成通常是通过选择最近报道WSMOCA(1 8 CAS RN 1827663-18-2; 图1)操作作为代表例。虽然一个特定阵列的合成在此协议的描述,相同的程序适用于宽范围的不同的序列,各异构体9的合成。我们预计,这一原山口将激发更多的研究人员参加序列控制化合物的科学,其中该分子研究迄今还典型地是生物聚合物,但很少包括的金属配合物为基础的物种的例子。

Protocol

1.金属络合物的单体制备(2 CAS RN 1381776-70-0,3 CAS RN 1261168-42-6,4 CAS RN 1261168-43-7;图1) 茹单体2的制备 在一个有搅拌棒(380毫克,0.48毫摩尔)和[Ru( 对 -cymene)Cl 2中]二聚体(224毫克,0.37毫摩尔);合并有机前体( 图1 5 9 CAS RN 1381776-63-1)百毫升单颈圆底烧瓶中。 添加甲醇(MeOH)(25ml)中的混合物,冷凝器连接到?…

Representative Results

图1示出的最终目标化合物,前体,和中间体的分子结构, 图2示出了树脂的图像和图3示出的样品中的选定的过程的步骤的MALDI-TOF质谱。从图2a的图像至2h显示的,因为它在该协议的第2反应步骤经历的树脂的颜色和外观的变化。 MALDI-TOF质谱法用于跟踪反应,并确认目标物质的存在预期。 <p class="jove_content" fo…

Discussion

完美除去从树脂上不希望的化学物质的不总是可能简单地通过与可以容易地溶解的化学品的溶剂洗涤。一个关键的技术能够有效地洗涤树脂是以使其膨胀并反复收缩,使剩余的内部的化学品将被压出。这就是为什么在我们的程序将树脂用CH 2 Cl 2和MeOH处理交替,因为它是洗涤( 例如,协议2.1.4)。

作为连续多非量化偶联反应的结果,在作为切割的混合物…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This work was supported by the World Premier International Research Center (WPI) Initiative on Materials Nanoarchitectonics and a Grant-in-Aid for Challenging Exploratory Research (No. 26620139), both of which were provided from MEXT, Japan.

Materials

Dichloro(p‐cymene)ruthenium(II), dimer Kanto Chemical 11443-65
Dichloro(1,5-cyclooctadiene)platinum(II) TCI D3592
Rhodium(III) chloride trihydrate Kanto Chemical 36018-62
Phosphate buffered saline, tablet Sigma Aldrich P4417-50TAB 
NovaSyn TG Sieber resin Novabiochem 8.55013.0005
HBTU TCI B1657
Benzoic anhydride Kanto Chemical 04116-30
Fmoc-Glu(OtBu)-OH・H2O Watanabe Chemical Industries K00428
Trifluoroacetic acid Kanto Chemical 40578-30
Triethylsilane TCI T0662
2-[2-(2-Methoxyethoxy)ethoxy]acetic acid Sigma Aldrich 407003 Dried over 3Å sieves
Dithranol Wako Pure Chemical Industries 191502
N-methylimidazole TCI M0508
N‐ethyldiisopropylamine Kanto Chemical 14338-32
Piperidine Kanto Chemical 32249-30
4'-(4-methylphenyl)-2,2':6',2"-terpyridine Sigma Aldrich 496375
Dehydrated grade dimethylsulfoxide Kanto Chemical 10380-05 
Dehydrated grade methanol Kanto Chemical 25506-05 
Dehydrated grade N,N‐Dimethylformamide Kanto Chemical 11339-84 Amine Free
Dehydrated grade dichloromethane Kanto Chemical 11338-84
MeOH Kanto Chemical 25183-81 
Dimethylsulfoxide Kanto Chemical 10378-70
Ethyl acetate Kanto Chemical 14029-81
Acetonitrile Kanto Chemical 01031-70 
1,2-dichloroethane Kanto Chemical 10149-00
Diethyl ether Kanto Chemical 14134-00 
Dichloromethane Kanto Chemical 10158-81

Riferimenti

  1. Takanashi, K., et al. Heterometal Assembly in Dendritic Polyphenylazomethines. Bull. Chem. Soc. Jpn. 80, 1563-1572 (2007).
  2. Packheiser, R., Ecorchard, P., Rüffer, T., Lang, H. Heteromultimetallic Transition Metal Complexes Based on Unsymmetrical Platinum(II) Bis-Acetylides. Organometallics. 27, 3534-3536 (2008).
  3. Sculfort, S., Braunstein, P. Intramolecular d10-d10 Interactions in Heterometallic Clusters of the Transition Metals. Chem. Soc. Rev. 40, 2741-2760 (2011).
  4. Vairaprakash, P., Ueki, H., Tashiro, K., Yaghi, O. M. Synthesis of Metal-Organic Complex Arrays. J. Am. Chem. Soc. 133, 759-761 (2011).
  5. Jacoby, M. Synthesis: Method Couples Various Metals in Predetermined Sequences. C&EN. 89, (2011).
  6. White, P., Eds Dörner, B. Synthetic Notes. Peptide Synthesis 2008/2009. , (2009).
  7. Sajna, K. V., Fracaroli, A. M., Yaghi, O. M., Tashiro, K. Modular Synthesis of Metal-Organic Complex Arrays Containing Precisely Designed Metal Sequences. Inorg. Chem. 54, 1197-1199 (2015).
  8. Sukul, P. K., et al. A Water-Soluble Metal-Organic Complex Array as a Multinuclear Heterometallic Peptide Amphiphile That Shows Unconventional Anion Dependency in Its Self-Assembly. Chem. Commun. 52, 1579-1581 (2016).
  9. Fracaroli, A. M., Tashiro, K., Yaghi, O. M. Isomers of Metal-Organic Complex Arrays. Inorg. Chem. 51, 6437-6439 (2012).
  10. Gude, M., Ryf, J., White, P. D. An Accurate Method for the Quantitation of Fmoc-Derivatized Solid Phase Supports. Letters in Peptide Science. 9, 203-206 (2002).
  11. Merrifield, R. B. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J. Am. Chem. Soc. 85, 2149-2154 (1963).
check_url/it/54513?article_type=t

Play Video

Citazione di questo articolo
Bose, P., Sukul, P. K., Yaghi, O. M., Tashiro, K. Synthesis of a Water-soluble Metal–Organic Complex Array. J. Vis. Exp. (116), e54513, doi:10.3791/54513 (2016).

View Video