Summary

机器人镜治疗系统偏瘫武器功能恢复

Published: August 15, 2016
doi:

Summary

我们开发了一个实时镜机器人系统使用自动控制技术偏瘫手臂功能恢复,进行了健康受试者通过反馈康复医生的临床研究,并立志任务。这个简单的镜子机器人可有效地应用于职业治疗脑卒中患者用偏瘫臂。

Abstract

镜疗法已在临床环境中用于中风后偏瘫臂的功能恢复被执行作为有效的职业疗法。它是由仿佛偏瘫臂实时移动而移动所述健康臂通过使用反射镜的引出一个假象进行。它可以通过感觉运动皮层的活化有利于大脑可塑性。然而,传统的镜疗法具有严格的限制在于,偏瘫臂实际上没有移动。因此,我们开发了一种实时2轴镜机器人系统作为使用闭合反馈机制,其使得偏瘫臂的实时运动常规镜疗法的简单的附加模块。我们用了3姿态和航向参考系统传感器,2无刷直流电机的肘,腕关节,和外骨骼框架。在6名健康受试者的可行性研究,机器人镜治疗是安全可行的。我们进一步选择有用的任务傣族活动LY住在离康复医生通过反馈训练。一个慢性中风患者镜机器人系统的2周申请后显示,在采用Fugl-Meyer评分尺度和肘部屈肌痉挛的改善。机器人镜疗法可提高本体输入到感觉皮层,这被认为是在神经可塑性和偏瘫臂的功能恢复重要。本文中所呈现的镜像机器人系统可以很容易地开发并有效地利用推进职业治疗。

Introduction

对于患有中风,半身不遂手臂功能障碍的破坏性影响。执行双手活动的能力,对于日常生活中必不可少的,但偏瘫手臂功能缺损中风发作后常保持甚至几年。在医院的各种培训课程,练习,以增加运动或被动重复范围的简单任务有一个偏瘫手臂功能的恢复影响不大。出于这个原因,涉及到日常生活(ADL的)活动有意义的任务的训练已被应用到职业治疗医院。

镜治疗的效果是由以前的研究在神经康复1-4证明。镜疗法可如同偏瘫臂实时移动而移动所述健康臂通过使用反射镜的引出一个假象进行。它可以通过感觉皮层1的活化促进脑神经可塑性。因此,MOTOř功率和​​偏瘫臂的功能可以得到改善。然而,传统的镜疗法具有严格的限制在于,偏瘫臂实际上没有移动。

因此,我们开发了一个实时的2轴镜机器人系统作为一个简单的附加模块常规理疗镜,采用闭环反馈机制。这可能传达本体输入到感觉皮层,这被认为在神经可塑性和偏瘫臂的功能恢复( 图1和2)5-7重要。

Protocol

所有的程序进行审查,并由首尔大学医院的机构审查委员会批准。 1.镜治疗任务的2维镜疗法任务的示例( 图3) 而在照镜子的热身运动约5分钟自由移动健康手臂。 注意:一个可以利用一个节拍器,使病人可以行使健康臂的运动以有节奏的方式。 在健侧,运球并放置一个小球变成类似台球约5分钟(“球在洞”任务)所选择的洞。运球并放置一个小球变?…

Representative Results

六名健康受试者进行的“笔标记任务'(与附着在健康手笔触摸的两个小板交替, 如图17),10倍历时每个受试者平均106秒。没有观察到的不良事件,并且机器人镜疗法被证明是可行的。 此外,在康复医生的临床研究进行。我们请专家意见,以确定有效的机器人镜治疗职业相应的任务。从6康复医生反馈,错觉的?…

Discussion

本研究的主要目的是开发一偏瘫臂的功能恢复使用自动控制算法实时镜机器人系统。机器人辅助治疗对中风后上肢功能障碍长期复苏的影响在以往的研究证明12有益的,各种臂机器人相继出台13-20。但是,实现双侧臂移动上肢机器人的以前的研究应用的机械连接,而无需使用反射镜,它是由镜疗法14-15的概念不同。因此,我们的研究可通过使用实际镜,以促进本体输入一个?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作是由汉城脑聚变计划国立大学(800-20120444)和跨学科研究倡议计划从工程和医学院,首尔国立大学(800-20150090)学院的支持。

Materials

LabVIEW National Instruments System design software
24V power supply XP Power MHP1000PS24 24V Any 24V power supply should do
AHRS sensor receiver E2box EBRF24GRCV
AHRS sensors E2box EBIMU-9DOFV2 You will need total 3 sensors. Any AHRS sensors will do
EC90 flat motor module Maxon 323772 + 223094 + 453231 Any geared motor with higher than 30Nm should do. (For our custom machined parts, you will need these particular flat motor and gear module, but the gear ratio and encoder may vary) 
EC45 flat motor module Maxon 397172 Any geared motor with higher than 10Nm should do (For our custom machined parts, you should use the same gear module but the gear ratio, motor, and encoder may vary)
EPOS2 70/10 controller Maxon 375711 This can be replaced with EPOS 24/5 controller
EPOS2 24/5 controller Maxon 367676
Connector and cable set Maxon 381405 + 384915 + 275934 + 354045 You can also make these cables. Connectors and corresponding wire info can be found in "300583-Hardware-Reference-En.pdf" and "300583-Cable-Starting-Set-En.pdf"
Coupling- Oldham, Set Screw Type Misumi MCORK30-10-12 Type may vary
Coupling- High Rigidity, Oldham,
Set Screw Type
Misumi MCOGRK34-12-12 Type may vary
Shaft Collars Misumi SCWDM10-B   You will need 4 sets
Shaft Collars Misumi SDBJ10-8 You will need 2 sets
Precision Linear Shaft Misumi  PSSFG10-200 Any straight 10mm diameter shaft with at least 200mm length should do 
Bearings with housings Misumi BGRAB6801ZZ
Elbow motor force dispersion shaft  custom machined 3D CAD 
Lower elbow support custom machined Part Drawings
Elbow rooftop frame custom machined Part Drawings
Support wall custom machined Part Drawings You will need 2 frames.
Elbow coupling hollow cylinder cover  custom machined Part Drawings
Wrist motor force dispersion shaft custom machined Part Drawings
Wrist rooftop frame custom machined Part Drawings
Upper wrist coupling hollow cylinder cover custom machined Part Drawings
Lower wrist coupling hollow cylinder cover custom machined Part Drawings
Joint movement limiter custom machined Part Drawings
Handle 3D printed Part Drawings
Upper elbow support 3D printed Part Drawings
Friction reduction ring 3D printed Part Drawings
Acrylic mirror custom laser cutting Part Drawings
Task table custom machined Part Drawings
Silicone sponge
DOF limiter 3D printed Part Drawings
DOF limiter lid 3D printed Part Drawings
Healthyarm handle 3D printed Part Drawings
Ball rollers – Press fit Misumi BCHA18
Goalpost 3D printed Part Drawings
Circle trace 3D printed Part Drawings
Angled assist 3D printed Part Drawings Optional
Curved assist 3D printed Part Drawings Optional
Plain assist 3D printed Part Drawings Optional
Task board custom laser cutting Part Drawings

Riferimenti

  1. Hamzei, F., et al. Functional plasticity induced by mirror training: the mirror as the element connecting both hands to one hemisphere. Neurorehabil Neural Repair. 26 (5), 484-496 (2012).
  2. Thieme, H., Mehrholz, J., Pohl, M., Behrens, J., Dohle, C. Mirror therapy for improving motor function after stroke. Cochrane Database Syst Rev. 3, CD008449 (2012).
  3. Dohle, C., et al. Mirror therapy promotes recovery from severe hemiparesis: a randomized controlled trial. Neurorehabil Neural Repair. 23 (3), 209-217 (2009).
  4. Pervane Vural, S., Nakipoglu Yuzer, G. F., Sezgin Ozcan, D., Demir Ozbudak, S., Ozgirgin, N. Effects of Mirror Therapy in Stroke Patients With Complex Regional Pain Syndrome Type 1: A Randomized Controlled Study. Arch Phys Med Rehabil. 97 (4), 575-581 (2016).
  5. De Santis, D., et al. Robot-assisted training of the kinesthetic sense: enhancing proprioception after stroke. Front Hum Neurosci. 8, 1037 (2015).
  6. Smorenburg, A. R., Ledebt, A., Deconinck, F. J., Savelsbergh, G. J. Practicing a matching movement with a mirror in individuals with spastic hemiplegia. Res Dev Disabil. 34 (9), 2507-2513 (2013).
  7. Semrau, J. A., Herter, T. M., Scott, S. H., Dukelow, S. P. Robotic identification of kinesthetic deficits after stroke. Stroke. 44 (12), 3414-3421 (2013).
  8. Niku, S. Chapter 4, Dynamic Analysis and Forces. Introduction to Robotics: Analysis, Systems, Applications. , (2001).
  9. Sanford, J., Moreland, J., Swanson, L. R., Stratford, P. W., Gowland, C. Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke. Phys Ther. 73 (7), 447-454 (1993).
  10. Bohannon, R. W., Smith, M. B. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 67 (2), 206-207 (1987).
  11. Shah, S., Vanclay, F., Cooper, B. Improving the sensitivity of the Barthel Index for stroke rehabilitation. J Clin Epidemiol. 42 (8), 703-709 (1989).
  12. Lo, A. C., et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 362 (19), 1772-1783 (2010).
  13. Ho, N. S., et al. An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation. IEEE Int Conf Rehabil Robot. , 5975340 (2011).
  14. Hesse, S., Schulte-Tigges, G., Konrad, M., Bardeleben, A., Werner, C. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil. 84 (6), 915-920 (2003).
  15. Lum, P. S., et al. MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: A follow-up study. J Rehabil Res Dev. 43 (5), 631-642 (2006).
  16. Yang, C. L., Lin, K. C., Chen, H. C., Wu, C. Y., Chen, C. L. Pilot comparative study of unilateral and bilateral robot-assisted training on upper-extremity performance in patients with stroke. Am J Occup Ther. 66 (2), 198-206 (2012).
  17. Nef, T., Mihelj, M., Riener, R. ARMin: a robot for patient-cooperative arm therapy. Med Biol Eng Comput. 45 (9), 887-900 (2007).
  18. Ozkul, F., Barkana, D. E., Demirbas, S. B., Inal, S. Evaluation of proprioceptive sense of the elbow joint with RehabRoby. IEEE Int Conf Rehabil Robot. , 5975466 (2011).
  19. Pehlivan, A. U., Celik, O., O’Malley, M. K. Mechanical design of a distal arm exoskeleton for stroke and spinal cord injury rehabilitation. IEEE Int Conf Rehabil Robot. , 5975428 (2011).
  20. Zhang, H., et al. Feasibility studies of robot-assisted stroke rehabilitation at clinic and home settings using RUPERT. IEEE Int Conf Rehabil Robot. , 5975440 (2011).
check_url/it/54521?article_type=t

Play Video

Citazione di questo articolo
Beom, J., Koh, S., Nam, H. S., Kim, W., Kim, Y., Seo, H. G., Oh, B., Chung, S. G., Kim, S. Robotic Mirror Therapy System for Functional Recovery of Hemiplegic Arms. J. Vis. Exp. (114), e54521, doi:10.3791/54521 (2016).

View Video