Summary

Produksjonen av Pluripotent stamceller fra mus fostervann Cells Ved hjelp av en Transposon System

Published: February 28, 2017
doi:

Summary

In this study, we generate induced pluripotent stem cells from mouse amniotic fluid cells, using a non-viral-based transposon system.

Abstract

Induced pluripotent stem (iPS) cells are generated from mouse and human somatic cells by forced expression of defined transcription factors using different methods. Here, we produced iPS cells from mouse amniotic fluid cells, using a non-viral-based transposon system. All obtained iPS cell lines exhibited characteristics of pluripotent cells, including the ability to differentiate toward derivatives of all three germ layers in vitro and in vivo. This strategy opens up the possibility of using cells from diseased fetuses to develop new therapies for birth defects.

Introduction

Fosterdiagnostikk er et viktig klinisk verktøy for å evaluere genetiske sykdommer (dvs. kromosomavvik, monogenetic eller polygenetisk / multifaktoriell sykdommer) og medfødte misdannelser (dvs. medfødt diafragma brokk, cystisk lungelesjoner, exomphalos, gastroschise). Fostervann (AF) celler er enkle å få tak i fra rutinemessig fastsatte prosedyrer i andre trimester av svangerskapet (dvs. fostervannsprøve og amnioreduction) eller keisersnitt 1, 2. Tilgjengeligheten av AF-celler fra prenatal eller nyfødte gir mulighet for å bruke denne kilde for regenerativ medisin, og flere forskere undersøkt muligheten for å behandle forskjellige vev skader eller sykdommer ved hjelp av en stilk cellepopulasjon isolert fra AF 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. Muligheten for lett å skaffe AF-celler fra syke pasienter, etter et tidsvindu der sykdommen er ofte stasjonær, åpner veien til ideen om å bruke denne celle kilde for omprogrammering formål. Faktisk kan induseres pluripotent stammen (IPS) celler avledet fra AF-celler differensieres i cellene av interesse for in vitro legemiddeltesting eller vev for tekniske fremgangsmåter, for å fremstille en tilfredsstillende pasientspesifikk behandling før fødsel. Mange studier har allerede demonstrert evne til AF-celler til å være nytt og differensiert i et bredt spekter av celletyper 13, 14, 15, 16, 17 </ sup>, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27.

Siden oppdagelsen av Takahashi og Yamanaka 28 av omprogrammerte somatiske celler gjennom tvungen uttrykk av fire transkripsjonsfaktorer (Oct4, Sox2, cMyc og Klf4), er det gjort framgang innen omprogrammering. Tatt i betraktning de ulike metoder, kan vi skille mellom viral og ikke-virale tilnærminger. Den første forventer at bruken av virale vektorer (retrovirus og lentivirus), som har høy virkningsgrad, men vanligvis er ufullstendig stanse av den retrovirale transgenet, med både er konsekvensen av en delvis omprogrammeres cellelinje og risiko forinsertional mutagenese 29, 30, 31. Den ikke-viral metoden bruker ulike strategier: dvs. plasmider, vektorer, mRNA, protein, transposoner. Avledning av iPS celler uten transgene sekvenser tar sikte på å omgå de potensielt skadelige effektene av utett transgene uttrykk og insertional mutagenese. Blant alle de ovennevnte ikke-virale strategier, krever PiggyBac (PB) transposon / transposase-systemet bare de inverterte terminale gjentakelser flankerende et transgen og forbigående ekspresjon av transposase enzym for å katalysere innsetting eller eksisjons- hendelser 32. Fordelen ved bruk av transposoner i forhold til andre fremgangsmåter for IPS celle generasjon er muligheten for å oppnå vektorfrie iPS-celler med en ikke-viral vektor tilnærming som viser den samme effektivitet av retrovirale vektorer. Dette er mulig ved spor mindre fjerning av den integrerte transposon som koder for reprogramming faktorer etter en ny forbigående uttrykk for transposase i iPS celler 33. Gitt at PB er effektiv i forskjellige celletyper 34, 35, 36, 37, er mer egnet for en klinisk tilnærming med hensyn til virale vektorer, og gjør det mulig for produksjon av Xeno-fri iPS celler i motsetning til dagens viral produksjon protokoller som bruker xenobiotisk betingelser, blir dette systemet anvendt for å oppnå iPS celler fra murin AF.

Her foreslår vi en detaljert protokoll etter allerede publiserte arbeider for å vise produksjonen av pluripotente iPS kloner fra mus AF celler (iPS-AF celler) 38.

Protocol

Alle prosedyrer var i samsvar med italiensk lov. Murine AF prøver ble høstet fra gravide mus på 13,5 dager etter samleie (DPC) fra C57BL / 6-Tg (UBC-GFP) 30Scha / J-mus kalt GFP. 1. Transposon Produksjon MERK: transposon ekspresjonsvektorer ble generert ved hjelp av standard kloningsprosedyrer. Plasmid DNA for mus AF celler transfeksjon ble fremstilt ved bruk kommersielle kits. Bland 10 ng av plasmid-DNA med 50 ul DH5a bakterier i et 1,5 ml mikrosen…

Representative Results

For å evaluere evnen av omprogrammering, ble mus AF cellene oppsamlet fra fostre til GFP mus. Cellene ble transfektert med sirkulære transposon plasmid PB-tetO2-IRES-OKMS, som uttrykker Yamanaka faktorer (Oct4, Sox2, cMyc og Klf4) knyttet til mCherry fluorescerende protein i en doksycyklin-induserbar måte, og omvendt tetracyklin transaktivatorprotein (PB CAG-rtTA) plasmider sammen med den transposase ekspresjonsplasmid (mPBase). Mus AF celler ble transfektert med Oct4, Klf4, cMyc og S…

Discussion

Den velges for å oppnå den induksjon av pluripotency metode er relevant for celle kliniske sikkerheten med hensyn til langtids transplantasjon. I dag finnes det flere metoder som er egnet for omprogrammering. Blant de ikke-integrerende metoder, er Sendai viral (SeV) vektor et RNA-virus som kan produsere store mengder protein uten å integrere inn i kjernen av de infiserte celler 40 og kan være en strategi for å få iPS-celler. Sev vektorer kan være en attraktiv kandidat for generering av tra…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This work was supported by CARIPARO Foundation Grant number 13/04 and Fondazione Istituto di Ricerca Pediatrica Città della Speranza Grant number 10/02. Martina Piccoli, Chiara Franzin and Michela Pozzobon are funded by Fondazione Istituto di Ricerca Pediatrica Città della Speranza. Enrica Bertin is funded by CARIPARO Foundation Grant number 13/04. Paolo De Coppi is funded by Great Ormond Street Hospital Children’s Charity.

Materials

100 mm Bacterial-grade Petri Dishes  BD Falcon 351029 For in vitro differentiation
2-mercaptoethanol  Sigma M6250 For mouse AF, iPS-AF cells and differentiation medium
Alexa568-conjugated goat anti-mouse IgM  Thermo Fisher Scientific A21043 Secondary antibody (immunofluorescence)
Alexa594-conjugated chicken anti-goat IgG  Thermo Fisher Scientific A21468 Secondary antibody (immunofluorescence)
Alexa594-conjugated chicken anti-rabbit IgG  Thermo Fisher Scientific A21442 Secondary antibody (immunofluorescence)
Alexa594-conjugated goat anti-mouse IgG  Thermo Fisher Scientific A11005 Secondary antibody (immunofluorescence)
Alkaline Phosphatase kit  Sigma 85L1 Alkaline Phosphatase  staining
Ampicillin Sigma A0166 For bacterial selection
Bovine Serum Albumin  Sigma A7906 BSA, for blocking solution. Diluted in PBS 1X
Chloroform Sigma C2432 For RNA extraction
DH5α cells Thermo Fisher Scientific 18265-017 Bacteria for cloning procedure
Dulbecco's Modified Eagle Medium (DMEM) Thermo Fisher Scientific 41965039 For MEF, mouse AF, iPS-AF cells and differentiation medium
Doxycycline  Sigma D9891 For exogenous factors expression
Microcentrifuge tubes (1.5 mL)  Sarstedt  72.706 For PB production 
ES FBS  Thermo Fisher Scientific 10439024 For mouse AF, iPS-AF cells and differentiation medium
FBS  Thermo Fisher Scientific 10270106 For MEF medium
Fine point forceps F.S.T Dumont #5  AF isolation
Gelatin J.T.Baker 131 Used 0.1%, diluted in PBS 1X
Glycine Bio-Rad 161-0718 For blocking solution. Diluted in PBS 1X
Haematoxylin QS Vector Laboratories H3404 Nuclei detection
HE  Bio-Optica 04-061010 Histological analysis of teratoma
Hoechst  Thermo Fisher Scientific H3570 Nuclei detection
Horse Serum  Thermo Fisher Scientific 16050-122 For blocking solution
HRP-conjugated goat anti-mouse IgG SantaCruz sc2005 Secondary antibody (immunoperoxidase)
ImmPACT NovaRED  Vector Laboratories SK4805 Peroxidase substrate
Insulin syringe with needle (25G) Terumo SS+01H25161 Amniocentesis procedure
Klf4  SantaCruz sc-20691 Rabbit polyclonal IgG
L-glutamine  Thermo Fisher Scientific 25030 For mouse AF, iPS-AF cells and differentiation medium
LB broth (Lennox) Sigma L3022 For bacterial growth
LIF  Sigma L5158 For mouse AF and iPS-AF cells medium
Matrigel  BD 354234 For in vitro differentiation. Diluted 1:10 in DMEM
Methanol Sigma 32213 Peroxidase blocking
MULTIWELL 24 well plate BD Falcon 353047 For in vitro differentiation
MULTIWELL 6 well plate BD Falcon 353046 For MEF, mouse AF and iPS-AF cells culture
Nanog  ReproCELL RCAB0002P-F Rabbit polyclonal IgG
Non-essential amino acids  Sigma M7145 For mouse AF, iPS-AF cells and differentiation medium
Normal Goat Serum Vector Laboratories S2000 For blocking solution. Diluted in PBS 1X
NP-40 Sigma 12087-87-0 For cell permeabilization. Diluted in PBS 1X
Oct4 SantaCruz sc-5279 Mouse monoclonal IgG2b
Oligo (dT)  Thermo Fisher Scientific 18418012 For RT-PCR
Paraformaldehyde (solution) Sigma 441244 PFA, fixative, diluted in PBS
PBS 10X Thermo Fisher Scientific 14200-067 D-PBS, free of Ca2+/Mg2+. Diluted with sterile water to obtain PBS 1X
Penicillin – Streptomycin  Thermo Fisher Scientific 15070063 For MEF, mouse AF, iPS-AF cells and differentiation medium
Petri Dish (150mm) BD Falcon 353025 For MEF culture, tissue culture
PiggyBac transposase expression plasmid  Provided by professor Andras Nagy laboratory mPBase
PiggyBac-tetO2-IRES-OKMS transposon plasmid Provided by professor Andras Nagy laboratory PB-tetO2-IRES-OKMS
QIAprep Spin Maxiprep Kit Qiagen 12663 For plasmids purification
QIAprep Spin Miniprep Kit Qiagen 27106 For plasmids purification
Reverse tetracycline transactivator transposon plasmid  Provided by professor Andras Nagy laboratory rtTA
RNeasy Mini Kit  Qiagen 74134 For RNA extraction
Sox2  SantaCruz sc-17320 Goat polyclonal IgG
SSEA1  Abcam ab16285 Mouse monoclonal IgM
SuperScript II Reverse Transcriptase  Thermo Fisher Scientific 18064-014 For RT-PCR
Abcam ab20680 Rabbit polyclonal IgG
Taq DNA Polymerase Thermo Fisher Scientific 10342020 PCR
Trypsin  Thermo Fisher Scientific 25300-054 Cell culture passaging
Triton X-100 Bio-Rad 161-047 For cell permeabilization, diluted in PBS 1X
TRIzol Reagent Thermo Fisher Scientific 15596-026 For RNA extraction
Tubb3   Promega  G712A Mouse monoclonal IgG1
TWEEN-20 Sigma P1379 For cell permeabilization, diluted in PBS 1X
αfp    R&D Systems MAB1368 Mouse Monoclonal IgG1
αSMA  Abcam ab7817 Mouse Monoclonal IgG2a
Transfection Reagent (FuGENE HD) Promega  E2311 For AF cells transfection
Stereomicroscope Nikon SM2645 To perform amniocentesis 
200 ul tips Sarstedt  70.760012 To pick bacteria colonies
Scissor F.S.T 14094-11 stainless 25U To perform amniocentesis 
Ethanol Sigma 2860 To clean the abdominal wall of the pregnant dam
Tissue culture petri dish (150 mm)  BD Falcon 353025 For MEF expansion
Mitomycin C Sigma M4287-2MG For MEF inactivation
MULTIWELL 96 well plate BD Falcon 353071 For iPS-AF culture

Riferimenti

  1. You, Q., et al. Isolation of human mesenchymal stem cells from third-trimester amniotic fluid. Int J Gynaecol Obstet. 103 (2), 149-152 (2008).
  2. Prusa, A. R., Hengstschlager, M. Amniotic fluid cells and human stem cell research: a new connection. Med Sci Monit. 8 (11), RA253-RA257 (2002).
  3. Ditadi, A., et al. Human and murine amniotic fluid c-Kit+ Lin- cells display hematopoietic activity. Blood. 113 (17), 3953-3960 (2009).
  4. Piccoli, M., et al. Amniotic fluid stem cells restore the muscle cell niche in a HSA-Cre, Smn(F7/F7) mouse model. Stem Cells. 30 (8), 1675-1684 (2012).
  5. Zani, A., et al. Amniotic fluid stem cells improve survival and enhance repair of damaged intestine in necrotising enterocolitis via a COX-2 dependent mechanism. Gut. 63 (2), 300-309 (2014).
  6. Rota, C., et al. Human amniotic fluid stem cell preconditioning improves their regenerative potential. Stem Cells Dev. 21 (11), 1911-1923 (2012).
  7. Mirabella, T., et al. Pro-angiogenic soluble factors from Amniotic Fluid Stem Cells mediate the recruitment of endothelial progenitors in a model of ischemic fasciocutaneous flap. Stem Cells Dev. 21 (12), 2179-2188 (2012).
  8. Mirabella, T., Cili, M., Carlone, S., Cancedda, R., Gentili, C. Amniotic liquid derived stem cells as reservoir of secreted angiogenic factors capable of stimulating neo-arteriogenesis in an ischemic model. Biomaterials. 32 (15), 3689-3699 (2011).
  9. Yeh, Y. C., et al. Cardiac repair with injectable cell sheet fragments of human amniotic fluid stem cells in an immune-suppressed rat model. Biomaterials. 31 (25), 6444-6453 (2010).
  10. Kim, J. A., et al. MYOD mediates skeletal myogenic differentiation of human amniotic fluid stem cells and regeneration of muscle injury. Stem Cell Res Ther. 4 (6), 147 (2013).
  11. Vadasz, S., et al. Second and third trimester amniotic fluid mesenchymal stem cells can repopulate a de-cellularized lung scaffold and express lung markers. J Pediatr Surg. 49 (11), 1554-1563 (2014).
  12. Turner, C. G., et al. Preclinical regulatory validation of an engineered diaphragmatic tendon made with amniotic mesenchymal stem cells. J Pediatr Surg. 46 (1), 57-61 (2011).
  13. Galende, E., et al. Amniotic Fluid Cells Are More Efficiently Reprogrammed to Pluripotency Than Adult Cells. Cloning Stem Cells. 12 (2), 117-125 (2009).
  14. Li, C., et al. Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells. Hum Mol Genet. 18 (22), 4340-4349 (2009).
  15. Ye, L., et al. Induced pluripotent stem cells offer new approach to therapy in thalassemia and sickle cell anemia and option in prenatal diagnosis in genetic diseases. Proc Natl Acad Sci U S A. 106 (24), 9826-9830 (2009).
  16. Wolfrum, K., et al. The LARGE Principle of Cellular Reprogramming: Lost, Acquired and Retained Gene Expression in Foreskin and Amniotic Fluid-Derived Human iPS Cells. PLoS ONE. 5 (10), 137-138 (2010).
  17. Ye, L., et al. Generation of induced pluripotent stem cells using site-specific integration with phage integrase. Proc Natl Acad Sci U S A. 107 (45), 19467-19472 (2010).
  18. Lu, H. E., et al. Selection of alkaline phosphatase-positive induced pluripotent stem cells from human amniotic fluid-derived cells by feeder-free system. Exp Cell Res. 317 (13), 1895-1903 (2011).
  19. Lu, H. E., et al. Modeling Neurogenesis Impairment in Down Syndrome with Induced Pluripotent Stem Cells from Trisomy 21 Amniotic Fluid Cells. Exp Cell Res. 319 (4), 498-505 (2012).
  20. Kobari, L., et al. Human induced pluripotent stem cells can reach complete terminal maturation: in vivo and in vitro evidence in the erythropoietic differentiation model. Haematologica. 97 (12), 1795-1803 (2012).
  21. Li, Q., Fan, Y., Sun, X., Yu, Y. Generation of Induced Pluripotent Stem Cells from Human Amniotic Fluid Cells by Reprogramming with Two Factors in Feeder-free Conditions. J Reprod Dev. 59 (1), 72-77 (2012).
  22. Fan, Y., Luo, Y., Chen, X., Li, Q., Sun, X. Generation of Human β-thalassemia Induced Pluripotent Stem Cells from Amniotic Fluid Cells Using a Single Excisable Lentiviral Stem Cell Cassette. J Reprod Dev. 58 (4), 404-409 (2012).
  23. Liu, T., et al. High efficiency of reprogramming CD34+ cells derived from human amniotic fluid into induced pluripotent stem cells with Oct4. Stem Cells Dev. 21 (12), 2322-2332 (2012).
  24. Jiang, G., et al. Human transgene-free amniotic-fluid-derived induced pluripotent stem cells for autologous cell therapy. Stem Cells Dev. 23 (21), 2613-2625 (2014).
  25. Drozd, A. M., et al. Generation of human iPSC from cells of fibroblastic and epithelial origin by means of the oriP/EBNA-1 episomal reprogramming system. Stem Cell Res Ther. 6 (122), (2015).
  26. Moschidou, D., et al. Human mid-trimester amniotic fluid stem cells cultured under embryonic stem cell conditions with Valproic acid acquire pluripotent characteristics. Stem Cells Dev. 22 (3), 444-458 (2012).
  27. Moschidou, D., et al. Valproic Acid Confers Functional Pluripotency to Human Amniotic Fluid Stem Cells in a Transgene-free Approach. Mol Ther. 20 (10), 1953-1967 (2012).
  28. Takahashi, K., Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126 (4), 663-676 (2006).
  29. Mikkelsen, T. S., et al. Dissecting direct reprogramming through integrative genomic analysis. Nature. 454 (7200), 49-55 (2008).
  30. Sridharan, R., et al. Role of the murine reprogramming factors in the induction of pluripotency. Cell. 136 (2), 364-377 (2009).
  31. Knight, S., Collins, M., Takeuchi, Y. Insertional mutagenesis by retroviral vectors: current concepts and methods of analysis. Curr Gene Ther. 13 (3), 211-227 (2013).
  32. Fraser, M. J., Ciszczon, T., Elick, T., Bauser, C. Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol Biol. 5 (2), 141-151 (1996).
  33. Woltjen, K., Kim, S. I., Nagy, A. The PiggyBac Transposon as a Platform Technology for Somatic Cell Reprogramming Studies in Mouse. Methods Mol Biol. 1357, 1-22 (2015).
  34. Wu, S. C., et al. piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. Proc Natl Acad Sci U S A. 103 (41), 15008-15013 (2006).
  35. Ding, S., et al. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell. 122 (3), 473-483 (2005).
  36. Wang, W., et al. Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proc Natl Acad Sci U S A. 105 (27), 9290-9295 (2008).
  37. Cadiñanos, J., Bradley, A. Generation of an inducible and optimized PiggyBac transposon system. Nucleic Acids Res. 35 (12), e87 (2007).
  38. Bertin, E., et al. Reprogramming of mouse amniotic fluid cells using a PiggyBac transposon system. Stem Cell Research. 15 (3), 510-513 (2015).
  39. Woltjen, K., et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature. 458 (7239), 766-770 (2009).
  40. Fusaki, N., et al. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci. 85 (8), 348-362 (2009).
  41. Nishishita, N., et al. Generation of virus-free induced pluripotent stem cell clones on a synthetic matrix via a single cell subcloning in the naive state. PLoS One. 7 (9), e38389 (2012).
  42. Ono, M., et al. Generation of induced pluripotent stem cells from human nasal epithelial cells using a Sendai virus vector. PLoS One. 7 (8), e42855 (2012).
  43. Yant, S. R., et al. High-resolution genome-wide mapping of transposon integration in mammals. Mol Cell Biol. 25 (6), 2085-2094 (2005).
  44. Wilson, M. H., Coates, C. J., George, A. L. PiggyBac transposon-mediated gene transfer in human cells. Mol Ther. 15 (1), 139-145 (2007).
  45. Galvan, D. L., et al. Genome-wide mapping of PiggyBac transposon integrations in primary human T cells. J Immunother. 32 (8), 837-844 (2009).
  46. Huang, X., et al. Gene transfer efficiency and genome-wide integration profiling of Sleeping Beauty, Tol2, and piggyBac transposons in human primary T cells. Mol Ther. 18 (10), 1803-1813 (2010).
  47. Meir, Y. J., et al. Genome-wide target profiling of PiggyBac and Tol2 in HEK 293: pros and cons for gene discovery and gene therapy. BMC Biotechnol. 11 (28), (2011).
  48. Moretti, A., et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med. 363 (15), 1397-1409 (2010).
  49. Filareto, A., et al. An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells. Nat Commun. 4 (1549), (2013).
  50. Darabi, R., et al. Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell. 10 (5), 610-619 (2012).
check_url/it/54598?article_type=t

Play Video

Citazione di questo articolo
Bertin, E., Piccoli, M., Franzin, C., Nagy, A., Mileikovsky, M., De Coppi, P., Pozzobon, M. The Production of Pluripotent Stem Cells from Mouse Amniotic Fluid Cells Using a Transposon System. J. Vis. Exp. (120), e54598, doi:10.3791/54598 (2017).

View Video