Summary

Metoder til at studere<em> B. subtilis</em> Biofilm som en model til karakterisering Small Molecule Biofilm Inhibitors

Published: October 09, 2016
doi:

Summary

This study presents the development of reproducible methodologies to study biofilm inhibitors and their effects on Bacillus subtilis multicellularity.

Abstract

This work assesses different methodologies to study the impact of small molecule biofilm inhibitors, such as D-amino acids, on the development and resilience of Bacillus subtilis biofilms. First, methods are presented that select for small molecule inhibitors with biofilm-specific targets in order to separate the effect of the small molecule inhibitors on planktonic growth from their effect on biofilm formation. Next, we focus on how inoculation conditions affect the sensitivity of multicellular, floating B. subtilis cultures to small molecule inhibitors. The results suggest that discrepancies in the reported effects of such inhibitors such as D-amino acids are due to inconsistent pre-culture conditions. Furthermore, a recently developed protocol is described for evaluating the contribution of small molecule treatments towards biofilm resistance to antibacterial substances. Lastly, scanning electron microscopy (SEM) techniques are presented to analyze the three-dimensional spatial arrangement of cells and their surrounding extracellular matrix in a B. subtilis biofilm. SEM facilitates insight into the three-dimensional biofilm architecture and the matrix texture. A combination of the methods described here can greatly assist the study of biofilm development in the presence and absence of biofilm inhibitors, and shed light on the mechanism of action of these inhibitors.

Introduction

Multi-cellulære bakterielle samfund spiller en væsentlig rolle i naturlige og menneskeskabte miljøer, og kan være en fordel eller meget skadelig. Disse flercellede kolonier er kendt som biofilm, hvor de enkelte celler er indlejret i en egenproducerede ekstracellulære polymere stoffer (EPS) matrix. EPS kraftigt klæbe cellerne til overfladen, de koloniserer. De tjener som et skjold mod mekaniske og kemiske kræfter og skabe tæt kontakt mellem de omkringliggende celler, lette cellulær kommunikation 1. En biofilm kan ses som et differentieret samfund, hvor cellerne bruger stærkt reguleret, orkestreret processer for at koordinere deres aktiviteter i samfundet, samt på tværs af arter 2-5. Overgangen fra et planktoniske, fritlevende tilstand af vækst til en biofilm tilstand er ofte forbundet med udviklingsprocesser. Et godt eksempel er den grampositive jordbakterie Bacillus subtilis, og derfor et undomesticated belastning tjener som en robust model organisme for at studere de udviklingsmæssige stadier indtil biofilmdannelse. I denne bakterie, bevægelige celler organiserer sig i iøjnefaldende flercellede strukturer, der udfører specialiserede opgaver 4. En gruppe af celler, de matrix-producenter udskiller exopolysaccharider 6, det amyloid protein Tasa 7,8, og overfladen hydrofobicitet protein BslA 9,10; som alle deltager i samling af EPS 11-13.

I betragtning af den overflod af biofilm i naturlige og menneskeskabte nicher og den formodede fatale skader, de kan forårsage, er der et presserende behov for at finde måder at forebygge deres dannelse. Små molekyleinhibitorer kan støtte i opdagelsen af ​​nye regulatoriske veje, enzymer og strukturelle proteiner involveret i biofilm dannelse, og dermed fremme indsigt i de komplekse processer flercellede samfund forsamling. Som B. subtilis er en velundersøgte model for biofilmdannelse 14,15, kan det bruges til at vurdere effekten af forskellige biofilm hæmmere. Denne undersøgelse tackler fire grundlæggende metoder, der er nøglen til evaluering af respons biofilm på inhibitorer med små molekyler. For det første at sikre, at disse inhibitorer har en biofilm-specifikt mål, adskillelse af effekten på planktoniske vækst fra effekten på biofilmdannelse er kritisk. De fleste antibakterielle midler målceller i deres planktoniske vækstfase, men molekyler, der er målrettet biofilmen livsstil er sjældne. Derudover, som molekyler, som ikke påvirker planktoniske vækst er ikke giftige, kan de reducere det selektive pres begunstige antibiotiske resistente mutanter 16. For eksempel, når biofilm behandles med D-aminosyrer eller visse andre cellevæg-interfererende molekyler, de er enten forstyrres eller skilles ad, men disse inhibitorer kun mildt påvirke planktoniske vækst 12,17. I modsætning hertil mange antibiotika drastisk forringe planktoniske vækst, med little eller ingen virkning på biofilmdannelse 17.

For det andet er afgørende indførelse af en homogen og robust eksperimentel rammer at undersøge virkningen af ​​de små molekyler. Vi observerede, at den aktive koncentrationsområde småmolekylære inhibitorer var følsom over for de før-dyrkningsbetingelser og forsøgsopstillingen anvendes til at undersøge virkningen af ​​disse inhibitorer med små molekyler. Forskellige rapporter, især studerer B. subtilis, afslørede variationer i koncentrationsområdet, hvor D-aminosyrer inhiberer dannelsen af pellikeler – de flydende bakterielle biofilm 12,17-19. Resultaterne præsenteres her tyder på, at følgende faktorer tegner sig for forskelle i den aktive koncentrationsområde: pre-dyrkningsbetingelser (logaritmisk 12,17 versus sen-stationær fase 20 vækst), vækstmediet anvendt i præ-kultur tilstand (rig, undefined [Luria Broth, LB] versus defineret [mononatriumglutamatglycerol, MSgg]), inokulationen forholdet og især fjernelse af præ-dyrkningsmediet inden inokulering. Temperaturen af ​​statisk hinde vækst viste en mindre vigtig rolle i aktivitetsområdet af den lille molekyle inhibitor D-leucin, en repræsentativ D-aminosyre anvendes i denne undersøgelse.

Endelig, når de biofilm behandles med specifikke biofilm inhibitorer, der kræves robuste og informative metoder til at karakterisere effekten af ​​disse inhibitorer på biofilm fitness. Her er to metoder til selvstændigt karakteriserer virkningen af ​​småmolekylære inhibitorer beskrevet detaljeret: (1) Virkningen på enkeltceller i en biofilm koloni og deres resistens over for antimikrobielle midler. Celler i biofilm er typisk mere resistente over for antibiotika sammenlignet med fritlevende bakterier 21-23. Mens dette fænomen er multifaktoriel, blev evnen af EPS til at reducere antibiotikum penetration ofte betragtes som en tiltalende forklaring 24 </sup>. Denne metode vurderer overlevelsen af ​​forud fastsatte biofilm celler efter udsættelse for antibakterielle stoffer. (2) Effekten på biofilmen koloni arkitektur, fra den store til den lille skala. Biofilm kolonier karakteriseret ved deres tredimensionale struktur og tilstedeværelsen af ​​EPS. Ved hjælp af scanningselektronmikroskopi, kan ændringer i cellemorfologien, biofilm koloni struktur og arkitekturen og overflod af EPS visualiseres fra den store (mm) til lille skala (um).

Protocol

1. Vurdering af Virkning af småmolekyleinhibitorer på hinde og biofilm Colony Formation Der fremstilles en 2x opløsning af definerede biofilm-inducerende MSgg medium 25 uden calciumchlorid og jern (III) chlorid-hexahydrat. Efter filtersterilisering, tilsæt calciumchlorid. Mediet er klar til brug direkte eller det kan opbevares ved 4 ° C i mørke. Forbered 1x MSgg fortynding på dagen for eksperimentet. Fortynd 2x MSgg medium til 1x med sterilt destilleret vand (pellikeler) e…

Representative Results

Hinden analysen er en metode til at undersøge de stærkt regulerede og dynamiske processer af B. subtilis multicellularity. Ud over dette, er hinden assayet egnet til at teste en række af enten præ-starter betingelser eller små molekyler koncentrationer i en enkelt celle-kultur multiplade plade i ét eksperiment. Imidlertid B. subtilis hinde dannelse er følsom over for de før-dyrkningsbetingelser (f.eks vækstmedium af præ-kulturen og dens vækstfase), podningen forholdet og fjernelsen …

Discussion

Bacillus subtilis formularer robuste og meget strukturerede biofilm både i flydende (pellikeler) og på fast medium (kolonier). Derfor tjener det som en ideel model organisme at karakterisere virkningsmåden af ​​specifikke biofilm inhibitorer. På faste medier, celler danner flercellede strukturer med særlige kendetegn, som ikke er tydelig i pellikeler, ligesom rynker udstråler fra midten til kanten. Således pellikeler og kolonier er supplerende systemer til at studere B. subtilis multicellula…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Electron microscope imaging was conducted at the Electron Microscopy Unit of the Weizmann Institute of Science, supported in part by the Irving and Cherna Moskowitz Center for Nano and Bio-Nano Imaging. This research was also supported by the ISF I-CORE grant 152/1, Mr. and Mrs. Dan Kane, Ms. Lois Rosen, by a Yeda-Sela research grant, by the Larson Charitable Foundation, by Ruth and Herman Albert Scholars Program for New Scientists, by the Ilse Katz Institute for Materials Sciences and Magnetic Resonance Research grant, by the Ministry of Health grant for alternative research methods, and by the France-Israel Cooperation – Maimonide-Israel Research Program. IKG is a recipient of the Rowland and Sylvia Career Development Chair.

Materials

Luria Broth, Lennox Difco 240230
Bacto Agar Difco 214010
potassium phosphate monobasic  Sigma, 136.09 g/mol P0662-500G
potassium phosphate dibasic  Fisher Scientific, 174.18 g/mol BP363-1
3-(N-morpholino)propanesulfonic acid Fisher Scientific, 209.27 g/mol BP308-500
magnesium chloride hexahydrate  Merck, 203.30 g/mol  1.05833.0250
calcium chloride anhydrous J.T. Baker, 110.98 g/mol 1311-01
manganese(II) chloride tetrahydrate Sigma, 197.91 g/mol 31422-250G-R
iron(III) chloride hexahydrate  Sigma, 270.30 g/mo) F2877-500G
zinc chloride anhydrous  Acros Organics, 136.29 g/mol 424592500
thiamine hydrochloride Sigma, 337.27 g/mol T1270-100G
L-tryptophan Fisher Scientific, 204.1 g/mol BP395-100
L-phenylalanine Sigma, 165.19 g/mol P5482-100G
L-threonine Sigma, 119.12 g/mol T8625-100G
glycerol anhydrous Bio-Lab Itd 712022300
L-glutamic acid monosodium salts hydrate  Sigma, 169.11 g/mol G1626-1KG
D-leucine Sigma, 169.11 g/mol 855448-10G
ethanol anhydrous Gadot 830000054
razor blade Eddison NA
circular cellulose filter papers Whatman, 90 mm 1001-090
glutaraldehyde EMS (Electron Micoscopy Science), 25% in water 16220
paraformaldehyde  EMS, 16% in water 15710
sodium cacodylate Merck, 214.05 g/mol  8.2067
calcium chloride 2-hydrate Merck, 147.02 g/mol  1172113
stub-aluminium mount EMS, sloted head 75230
carbon adhesive tape EMS 77825-12
Shaker 37°C New Brunswick Scientific Innowa42 NA
Centrifuge Eppendorf table top centrifuge 5424 NA
Digital Sonifier, Model 250, used with Double Step Microtip Branson NA
Incubator 30 °C Binder NA
Incubator 23 °C Binder NA
Filter System, 500 ml, polystyrene Cornig Incorporated NA
Rotary Shaker – Orbitron Rotatory II Boekel NA
S150 Sputter Coater  Edwards NA
CPD 030 Critical Point Dryer BAL-TEC NA
Environmental Scanning Electron Microscope XL30 ESEM FEG Philips (FEI) NA

Riferimenti

  1. Branda, S. S., Vik, S., Friedman, L., Kolter, R. Biofilms: the matrix revisited. Trends Microbiol. 13, 20-26 (2005).
  2. Stoodley, P., Sauer, K., Davies, D. G., Costerton, J. W. Biofilms as complex differentiated communities. Annu Rev Microbiol. 56, 187-209 (2002).
  3. Miller, M. B., Bassler, B. L. Quorum sensing in bacteria. Annu Rev Microbiol. 55, 165-199 (2001).
  4. Aguilar, C., Vlamakis, H., Losick, R., Kolter, R. Thinking about Bacillus subtilis as a multicellular organism. Curr Opin Microbiol. 10, 638-643 (2007).
  5. Kolter, R., Greenberg, E. P. Microbial sciences: the superficial life of microbes. Nature. 441, 300-302 (2006).
  6. Kearns, D. B., Chu, F., Branda, S. S., Kolter, R., Losick, R. A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol. 55, 739-749 (2005).
  7. Branda, S. S., Chu, F., Kearns, D. B., Losick, R., Kolter, R. A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol. 59, 1229-1238 (2006).
  8. Romero, D., Aguilar, C., Losick, R., Kolter, R. Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Natl Acad Sci USA. 107, 2230-2234 (2010).
  9. Kobayashi, K., Iwano, M. BslA(YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms. Mol Microbiol. 85, 51-66 (2012).
  10. Hobley, L., et al. BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm. Proc Natl Acad Sci USA. 110, 13600-13605 (2013).
  11. Romero, D., Vlamakis, H., Losick, R., Kolter, R. An accessory protein required for anchoring and assembly of amyloid fibres in B. subtilis biofilms. Mol Microbiol. 80, 1155-1168 (2011).
  12. Kolodkin-Gal, I., et al. D-amino acids trigger biofilm disassembly. Science. 328, 627-629 (2010).
  13. Chan, Y. G., Kim, H. K., Schneewind, O., Missiakas, D. The capsular polysaccharide of Staphylococcus aureus is attached to peptidoglycan by the LytR-CpsA-Psr (LCP) family of enzymes. J Biol Chem. 289, 15680-15690 (2014).
  14. Mielich-Suss, B., Lopez, D. Molecular mechanisms involved in Bacillus subtilis biofilm formation. Environ Microbiol. 17, 555-565 (2014).
  15. Cairns, L. S., Hobley, L., Stanley-Wall, N. R. Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms. Mol Microbiol. 93, 587-598 (2014).
  16. Chen, M., Yu, Q., Sun, H. Novel strategies for the prevention and treatment of biofilm related infections. Int J Mol Sci. 14, 18488-18501 (2013).
  17. Bucher, T., Oppenheimer-Shaanan, Y., Savidor, A., Bloom-Ackermann, Z., Kolodkin-Gal, I. Disturbance of the bacterial cell wall specifically interferes with biofilm formation. Environ Microbiol Rep. 7, 990-1004 (2015).
  18. Sarkar, S., Pires, M. M. D-Amino acids do not inhibit biofilm formation in Staphylococcus aureus. PLoS One. 10, e0117613 (2015).
  19. Wei, W., Bing, W., Ren, J., Qu, X. Near infrared-caged D-amino acids multifunctional assembly for simultaneously eradicating biofilms and bacteria. Chem Commun (Camb). 51, 12677-12679 (2015).
  20. Leiman, S. A., et al. D-amino acids indirectly inhibit biofilm formation in Bacillus subtilis by interfering with protein synthesis. J Bacteriol. 195, 5391-5395 (2013).
  21. Costerton, J. W., Stewart, P. S., Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science. 284, 1318-1322 (1999).
  22. Davies, D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov. 2, 114-122 (2003).
  23. Olsen, I. Biofilm-specific antibiotic tolerance and resistance. Eur J Clin Microbiol Infect Dis. 34, 877-886 (2015).
  24. Tseng, B. S., et al. The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Environ Microbiol. 15, 2865-2878 (2013).
  25. Branda, S. S., Gonzalez-Pastor, J. E., Ben-Yehuda, S., Losick, R., Kolter, R. Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA. 98, 11621-11626 (2001).
  26. Holscher, T., et al. Motility, Chemotaxis and Aerotaxis Contribute to Competitiveness during Bacterial Pellicle Biofilm Development. J Mol Biol. 427, 3695-3708 (2015).
  27. Bray, D. . Methods in Biotechnology. 13, 235-243 (2000).
  28. Ensikat, H. J., Ditsche-Kuru, P., Barthlott, W. . Scanning electron microscopy of plant surfaces: simple but sophisticated methods for preparation and examination. 1, 248-255 (2010).
  29. Hayat, M. A. . Principles and techniques of scanning electron microscopy: Biological applications. 2, (1976).
  30. Schatten, H. . Scanning Electron Microscopy for the Life Sciences. , (2013).
  31. Bridier, A., Meylheuc, T., Briandet, R. Realistic representation of Bacillus subtilis biofilms architecture using combined microscopy (CLSM, ESEM and FESEM). Micron. 48, 65-69 (2013).
  32. Boyde, A., MacOnnachie, E. Volume changes during preparation of mouse embryonic tissue for scanning electron microscopy. SCANNING. 2, 149-163 (1979).
  33. Yao, Z., Kahne, D., Kishony, R. Distinct single-cell morphological dynamics under beta-lactam antibiotics. Mol Cell. 48, 705-712 (2012).
  34. Epstein, A. K., Pokroy, B., Seminara, A., Aizenberg, J. Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration. Proc Natl Acad Sci USA. 108, 995-1000 (2011).
  35. Vlamakis, H., Chai, Y., Beauregard, P., Losick, R., Kolter, R. Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol. 11, 157-168 (2013).
  36. Shemesh, M., Chai, Y. A combination of glycerol and manganese promotes biofilm formation in Bacillus subtilis via histidine kinase KinD signaling. J Bacteriol. 195, 2747-2754 (2013).
  37. Kolodkin-Gal, I., et al. Respiration control of multicellularity in Bacillus subtilis by a complex of the cytochrome chain with a membrane-embedded histidine kinase. Genes Dev. 27, 887-899 (2013).
  38. Oppenheimer-Shaanan, Y., et al. Spatio-temporal assembly of functional mineral scaffolds within microbial biofilms. npj Biofilms and Microbiomes. 2, 15031 (2016).
  39. Garcia-Betancur, J. C., Yepes, A., Schneider, J., Lopez, D. Single-cell analysis of Bacillus subtilis biofilms using fluorescence microscopy and flow cytometry. J Vis Exp. , e3796 (2012).
  40. Bogino, P. C., Oliva Mde, L., Sorroche, F. G., Giordano, W. The role of bacterial biofilms and surface components in plant-bacterial associations. Int J Mol Sci. 14, 15838-15859 (2013).
  41. Fratamico, P. M., Annous, B. A., Guenther, N. W. . Biofilms in the Food and Beverage Industires. 1, (2009).
  42. Gao, G., et al. Effect of biocontrol agent Pseudomonas fluorescens 2P24 on soil fungal community in cucumber rhizosphere using T-RFLP and DGGE. PLoS One. 7, e31806 (2012).
  43. Chen, Y., et al. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ Microbiol. 15, 848-864 (2013).
  44. Bryers, J. D. Medical biofilms. Biotechnol Bioeng. 100, 1-18 (2008).
  45. Logan, B. E. Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol. 7, 375-381 (2009).
  46. Nevin, K. P., Woodard, T. L., Franks, A. E., Summers, Z. M., Lovley, D. R. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio. 1, (2010).
  47. Torres, C. I., et al. A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol Rev. 34, 3-17 (2010).
  48. Li, J., Wang, N. Foliar application of biofilm formation-inhibiting compounds enhances control of citrus canker caused by Xanthomonas citri subsp. citri. Phytopathology. 104, 134-142 (2014).
  49. Okegbe, C., Price-Whelan, A., Dietrich, L. E. Redox-driven regulation of microbial community morphogenesis. Curr Opin Microbiol. 18, 39-45 (2014).
  50. Mann, E. E., Wozniak, D. J. Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev. 36, 893-916 (2012).
  51. Bouffartigues, E., et al. Sucrose favors Pseudomonas aeruginosa pellicle production through the extracytoplasmic function sigma factor SigX. FEMS Microbiol Lett. 356, 193-200 (2014).
  52. Wu, C., Lim, J. Y., Fuller, G. G., Cegelski, L. Quantitative analysis of amyloid-integrated biofilms formed by uropathogenic Escherichia coli at the air-liquid interface. Biophys J. 103, 464-471 (2012).
  53. Serra, D. O., Richter, A. M., Hengge, R. Cellulose as an Architectural Element in Spatially Structured Escherichia coli Biofilms. J Bacteriol. 195, 5540-5554 (2013).
check_url/it/54612?article_type=t

Play Video

Citazione di questo articolo
Bucher, T., Kartvelishvily, E., Kolodkin-Gal, I. Methodologies for Studying B. subtilis Biofilms as a Model for Characterizing Small Molecule Biofilm Inhibitors. J. Vis. Exp. (116), e54612, doi:10.3791/54612 (2016).

View Video