Summary

蓝危害自由烛光OLED

Published: March 19, 2017
doi:

Summary

我们提出了一个协议,用于保护眼睛和褪黑激素分泌的自由蓝危险,烛光有机发光二极管(OLED)的制造。

Abstract

A candlelight-style organic light emitting diode (OLED) is a human-friendly type of lighting because it is blue-hazard-free and has a low correlated color temperature (CCT) illumination. The low CCT lighting is deprived of high-energy blue radiation, and it can be used for a longer duration before causing retinal damage. This work presents the comprehensive protocols for the fabrication of blue-hazard-free candlelight OLEDs. The emission spectrum of the OLED was characterized by the maximum exposure time limit of the retina and the melatonin suppression sensitivity. The devices can be fabricated using dry and wet processes. The dry-processed OLED resulted in a CCT of 1,940 K and exhibited a maximum retinal exposure limit of 1,287 s at a brightness of 500 lx. It showed 2.61% melatonin suppression sensitivity relative to 480 nm blue light. The wet-processed OLED, where the spin coating is used to deposit hole injection, hole transport, and emissive layers, making fabrication fast and economical, produced a CCT of 1,922 K and showed a maximum retinal exposure limit of 7,092 at a brightness of 500 lx. The achieved relative melatonin suppression sensitivity of 1.05% is 86% and 96% less than that of the light emitting diode (LED) and compact fluorescent lamp (CFL), respectively. Wet-processed blue-hazard-free candlelight OLED exhibited a power efficiency of 30 lm/W, which is 2 times that of the incandescent bulb and 300 times that of the candle.

Introduction

如今,像LED和CFL照明源被大量用于室内和室外照明,部分节能的原因。然而,这些灯都含有丰富的蓝色发光,显示出较高的倾向,导致蓝危害。 LED和CFL发射带蓝色光富集的光谱,从而导致不可逆的损伤视网膜细胞1,2,3,4。蓝色光或强烈的白光具有高CCT抑制褪黑激素的分泌,一个褪黑素抗肿瘤激素,其可能会破坏昼夜节律5,6和睡眠行为7,8。褪黑激素,对昼夜节律的重要激素,松果体9合成。 24小时光暗Ç期间在黑暗时期观察到的褪黑激素水平高ycle 10。然而,在夜间强光抑制其合成和扰乱昼夜节律11。在夜间由于过度抑制褪黑激素,以明亮的灯光可以为女性乳腺癌12,13,14的一个危险因素。除了这些危害,蓝光中断夜间两栖类的活动,可以威胁到生态保护。另据报道,LED照明在博物馆的褪色梵高和塞尚15,16画油画的实际颜色。

因此,蓝色发光免费和低CCT烛状有机发光二极管(OLED)可以是LED和CFL的良好替代品。蜡烛发射蓝危险 – 自由和低CCT(1914 K)的照明,以及高品质(高显色指数,CRI)的发射光谱。何wever,大部分的电力驱动的照明装置的发射强烈的蓝色光具有比较高CCT。例如,最低的CCT为白炽灯泡约2300 K,而它是3000或5000 K中温或冷白荧光管和LED灯具。到目前为止,低CCT的OLED几乎免费的蓝光发射已经制造了人性化照明。 2012年,柔小组报道了生理上的友好,干处理,单发光层与1773 K的色温和11.9流明/功率效率W¯¯17 OLED。该器件显示出低得多的CCT比白炽灯泡(2300 K)为,而其功率效率并非但从节能点上可接受的。他们报告的另一个干处理烛光式使用双发光层,一个载波调制层18一起OLED。它表现出1970 K的低CCT和24流明/瓦的功率效率。后来,一个干处理OLED自由Of相载体调制层沿着三个发射层报告19。它的功率效率为21〜3流明/瓦和不同的CCT,其中2500ķ介于1900 K。2014年,胡等人。报告了通过中间层,这表明54.6流明/瓦和1,910ķ20低CCT高功率效率分离双发光层的干处理杂交的OLED。近日,柔的研究小组已经制造采用双发光层21高效率的烛光式OLED。它表现出85.4流明的高功率效率/ W和2279 K的色温直到现在,都已经作出努力来开发高效率,通过利用干法工艺和复杂的器件结构17,18低CCT烛光式OLED器件 19,20,2122。制定与湿法可行性烛光OLED,同时具有低色温,高功率效率和高光的质量是一个挑战。没有研究已发展到描述一给定光源的发射光谱灵敏度相对于蓝色光。光在夜晚的质量可以决定/改进,以尽量减少褪黑激素分泌的抑制。

也有一些报道模型计算抑制量。首先,布雷纳德等。 23和塔潘等。 24报道通过使用单色光的光谱灵敏度。后来,被形容25色光对抑制褪黑激素的影响,26。后者在本研究中采用了,因为大多数市售的灯具或新颖的照明源是多色和跨度在整个可见光范围内(即从深红色至紫色)。

在这项工作中,我们提出全面的协议通过干法和湿法工艺免费蓝危险,烛光OLED的制造。在两种方法中,该装置结构由采用单个发射层无任何载波调制层简化。所制造的OLED的电致发光(EL)谱分析为视网膜暴露限度和褪黑素分泌抑制的水平。发射的光到视网膜的最大暴露极限是通过使用报告由国际电工委员会(IEC)62471标准27,28的理论方面进行计算。最大暴露限制的“T”是通过使用每个OLED的发射光谱在100和500 LX亮度,足以分别家庭和办公室照明,计算。所有相关的计算STEPS在协议部分顺序给出。此外,照明对褪黑素抑制灵敏度的效应由以下褪黑素抑制29的作用光谱的公式计算。的计算由以下中的协议部分中给出的步骤进行。最大暴露限制“t”和褪黑素抑制灵敏度(%)相对于CCT的计算值在表3中给出。

Protocol

注:所有使用的材料是无致癌性,不易燃,并且无毒性。 1.蓝危害自由烛光OLED的制作 干法工艺 取载玻片以与一个125纳米的氧化铟锡(ITO)阳极层被涂覆的基材。洗用的肥皂溶液200毫升(50毫升液体洗涤剂和150毫升的去离子水)的衬底。用去离子水冲洗所述基片。干燥用氮气喷溅喷射基板。 穿上载玻片支架上的基片和浸在丙酮溶液中的滑动架中的烧杯中。把…

Representative Results

所得烛光OLED的电流 – 电压 – 亮度特性,通过使用静电计用100的亮度计一起测量。发射区9 mm 2的所有所得干燥处理装置和25 平方毫米为湿处理过的器件。这里,我们用125纳米的ITO膜的玻璃基板15Ω/ sq的薄层电阻为阳极。它具有透明度大于84%( 表4)。所有组成的Al阴极的OLED器件与在正向亮度测量。的EL光谱和委员会国际DE L'Eclairge(CIE)?…

Discussion

在OLED器件的制造中最重要的步骤是:1)清洗玻璃基板,2)选择适当的溶剂中,3)溶解的有机材料,4)均匀地形成通过旋涂在湿处理的膜,5 )控制热蒸发期间的沉积速率和所述有机层的厚度。最初,在清洁的ITO阳极涂覆的基材是至关重要的一步,以实现高效率。玻璃基板与肥皂溶液清洗,以除去油腻斑点或层。然后,它是超声波处理在丙酮中,接着异丙醇,从阳极层根除污垢颗粒。 UV /臭?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

The authors would like to acknowledge the support in part from the Ministry of Economic Affairs and the Ministry of Science and Technology, Taiwan, via Grants MEA 104-EC-17-A-07-S3-012, MOST 104-2119-M-007-012, and MOST 103-2923-E-007-003-MY3.

Materials

ITO glass Lumtech 84% transparency
poly(3,4-ethylenedioxythiophene)-  poly(styrenesulfonate)  (PEDOT/PSS) UniRegion Bio-Tech Stored at 4°C, HOMO (eV)= -4.9, LUMO (eV)= -3.3
 4,4,4-tris(N-carbazolyl)triphenylamine (TCTA) E-Ray Optoelectronics Technology co., Ltd Non-toxic, HOMO (eV)= -5.7, LUMO (eV)= -2.3
 tris(2-phenyl-pyridine) (Ir(ppy)3)      E-Ray Optoelectronics Technology co., Ltd Non-toxic, HOMO (eV)= -5.6, LUMO (eV)= -3.9
 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene  (TPBi) Luminescence Technology corp. Non-toxic, HOMO (eV)= -6.2, LUMO (eV)= -2.7
iridium(III)bis(4-phenylthieno[3,2-c]pyridinato-N,C 2’)acetylacetonate (PO-01) Luminescence Technology corp. Non-toxic, HOMO (eV)= -5.1, LUMO (eV)= -2.7
 tris(2-phenylquinoline)iridium(III) (Ir(2-phq)3) E-Ray Optoelectronics Non-toxic, HOMO (eV)= -5.1, LUMO (eV)= -2.8
LiF Echo chemicals 99.98%
Aluminium ingot (Al) Guv team International pvt. ltd 100.00%
Acetone Echo chemicals 99.90%
2-Propanol Echo chemicals 99.90%
Hole-injection material, WHI-001 WAN HSIANG precision machinery co., Ltd non-toxic, HOMO (eV)= -9.8, LUMO (eV)= -5.6
Hole-transport material, WHI-215 WAN HSIANG precision machinery co., Ltd non-toxic, HOMO (eV)= -5.4, LUMO (eV)= -2.5
 host material, WPH-401 WAN HSIANG precision machinery co., Ltd non-toxic, HOMO (eV)= -5.8, LUMO (eV)= -2.7
Electron-injection material, WIT-651 WAN HSIANG precision machinery co., Ltd non-toxic, HOMO (eV)= -5.8, LUMO (eV)= -3.1
Electron-transpot material, WET-603 WAN HSIANG precision machinery co., Ltd non-toxic, HOMO (eV)= -5.9, LUMO (eV)= -2.6
Green dye, WPGD-832 WAN HSIANG precision machinery co., Ltd non-toxic, HOMO (eV)= -5.8, LUMO (eV)= -3.1
Deep-red dye, PER 53 E-Ray Optoelectronics Technology co., Ltd non toxic, HOMO (eV)= -5.1, LUMO (eV)= -2.4

Riferimenti

  1. Melton, R. Ultraviolet and blue light. Rev opt. 2, 151 (2014).
  2. Singerman, L. J., Miller, D. G. Pharmacological Treatments for AMD. Rev Ophthalmol. 10, 88-90 (2003).
  3. . . International Energy Agency final report on potential health issues on SSL. , (2014).
  4. Pauley, S. M. Lighting for the human circadian clock: Recent research indicates that lighting has become a public health issue. Med. Hypotheses. 63, 588-596 (2004).
  5. Mills, P. R., Tomkins, S. C., Schlangen, L. J. M. The effect of high correlated colour temperature office lighting on employee wellbeing and work performance. J. Circadian Rhythm. 5, 1-9 (2007).
  6. Sato, M., Sakaguchi, T., Morita, T. The effects of exposure in the morning to light of different color temperatures on the behavior of core temperature and melatonin secretion in humans. Biol. Rhythm. Res. 36, 287-292 (2005).
  7. Arendt, J. Melatonin, circadian rhythms, and sleep. New Engl. J. Med. 343 (15), 1114-1116 (2000).
  8. Wiechmann, A. F. Melatonin: parallels in pineal gland and retina. Exp Eye Res. 42 (6), 507-527 (1986).
  9. Brown, G. M. Light, melatonin, sleep-wake cycle. J. pshychiatry. Neurosci. 19 (5), 345-356 (1994).
  10. Lewy, A. J., Wehr, T. A., Goodwin, F. K., Newsome, D. A., Markey, S. P. Light suppresses melatonin secretion in humans. Science. 210 (4475), 1267-1269 (1980).
  11. Stevens, R. G., Brainard, G. C., Blask, D. E., Lockley, S. W., Motta, M. E. Breast cancer and circadian disruption from electric lighting in the modern world. CA Cancer J. Clin. 64 (3), 207-218 (2014).
  12. Davis, S., Mirick, D. K., Stevens, R. G. Night-shift work, light at night, and risk of breast cancer. J. Natl. Cancer Inst. 93, 1557-1562 (2001).
  13. Kloog, I., Haim, A., Stevens, R. G., Barchanade, M., Portnov, B. A. Light at Night Co Distributes with Incident Breast but Not Lung Cancer in the Female Population of Israel. Chronobiology Intl. 25, 65-81 (2008).
  14. Monico, L. . S. Anal. Chem. 85 (2), 851-859 (2013).
  15. Jou, J. H. Organic light-emitting diode-based plausibly physiologically-friendly low color-temperature night light. Org. Electron. 13 (8), 1349-1355 (2012).
  16. Jou, J. H. Candlelight-style organic light-emitting diodes. Adv. Funct. Mater. 23 (21), 2750-2757 (2013).
  17. Jou, J. H. OLEDs with chromaticity tunable between dusk-hue and candle-light. Org. Electron. 14 (1), 47-54 (2013).
  18. Hu, Y., Zhang, T., Chen, J., Ma, D., Cheng, C. H. Hybrid organic light-emitting diodes with low color temperature and high efficiency for physiologically-friendly night illumination. Isr. J. Chem. 54, 979-985 (2014).
  19. Jou, J. H. Enabling a blue-hazard free general lighting based on candlelight-style OLED. Optics Express. 23 (11), A576-A581 (2015).
  20. Jou, J. H. High efficiency low color-temperature organic light emitting diodes with a blend interlayer. J. Mater. Chem. 21, 17850-17854 (2011).
  21. Brainard, G. G. Action spectrum for melatonin regulation in humans: Evidence for a novel circadian photoreceptor. J Neurosci. 21 (16), 6405-6412 (2001).
  22. Thapan, K., Arendt, J., Skene, D. J. An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. J Physiol. 535 (Pt 1), 261-267 (2001).
  23. Bullough, J. D., Bierman, A., Figueiro, M. G., Rea, M. S. Letter On Melatonin Suppression from Polychromatic and Narrowband Light Lighting Research. Chronobiol. Int. 25 (4), 653-656 (2008).
  24. Rea, M. S., Figueiro, M. G., Bullough, J. D., Bierman, A. A model of phototransduction by the human circadian system. Brain Res Brain Res Rev. 50, 213-228 (2005).
  25. International Electrotechnical Commission. Photobiological safety of lamps and lamp systems. IEC 62471: 2006. , (2006).
  26. ICNIRP. ICNIRP guidelines on limits of exposure to incoherent visible and infrared radiation. Health Physics. 105 (1), (2013).
  27. Jou, J. H. Melatonin suppression extent measuring device. Patent. , (2012).
  28. Jou, J. H. Enabling high-efficiency organic light-emitting diodes with a cross-linkable electron confining hole transporting material. Org. Electron. 24, 254-262 (2015).
  29. Commission International de l’Éclairage. . Method of measuring and specifying colour rendering of light sources. , 16 (1995).
  30. Jou, J. H. A universal, easy-to-apply light-quality index based on natural light spectrum resemblance. Appl. Phys. Lett. 104, 203304-203309 (2014).
  31. Jou, J. H. Pseudo-natural light for displays and lighting. Adv. Optical mater. 3, 95-102 (2015).
  32. Jou, J. H. Wetprocess feasible candlelight OLED. J. Mater. Cem. C. , (2016).
  33. Kim, B. S. UV-ozone surface treatment of indium-tin-oxide in organic light emitting diodes. J. Korean Phys. Soc. 50, 1858-1861 (2007).
  34. Lee, T. W. Characteristics of solution-processed small-molecule organic films and light-emitting diodes compared with their vacuum-deposited counterparts. Adv. Mater. 19 (10), 1625-1630 (2009).
  35. Duan, L. Solution processable small molecules for organic light-emitting diodes. J. Mater. Chem. 20, 6392-6407 (2010).
  36. Kim, S. K. Low-power flexible organic light-emitting diode display device. Adv. Mater. 23, 3511-3516 (2011).
  37. Kaake, L. G., Barbara, P. F., Zhu, X. Y. Intrinsic charge trapping in organic and polymeric semiconductors: a physical chemistry perspective. J. Phys. Chem. Lett. 1 (3), 628-635 (2010).
  38. Yersin, H., Rausch, A. F., Czerwieniec, R., Hofbeck, T., Fischer, T. The triplet state of organo-transition metal compounds. Triplet harvesting and singlet harvesting for efficient OLEDs. Coord. Chem. Rev. 255, 2622-2652 (2011).
  39. Jou, J. H., Kumar, S., Agarwal, A., Lia, T. H., Sahoo, S. Approaches for fabricating high efficiency organic light emitting diodes. J. Mater. Chem. C. 3, 2974-3002 (2015).
  40. Volz, D. Auto-catalysed crosslinking for next-generation OLED-design. J. Mater. Chem. 22, 20786-20790 (2012).
  41. Furuta, P. T., Deng, L., Garon, S., Thompson, M. E., Frechet, J. M. J. Platinum functionalized random copolymers for use in solution-processible, efficient, near-white organic light-emitting diodes. J. Am. Chem. Soc. 126 (47), 15388-15389 (2004).
  42. Biwu, M. New thermally cross-linkable polymer and its application as a hole-transporting layer for solution processed multilayer organic light emitting diodes. Chem. Mater. 19, 4827-4832 (2007).
check_url/it/54644?article_type=t

Play Video

Citazione di questo articolo
Jou, J., Singh, M., Su, Y., Liu, S., He, Z. Blue-hazard-free Candlelight OLED. J. Vis. Exp. (121), e54644, doi:10.3791/54644 (2017).

View Video