Summary

缺血性中风和缺血再灌注小鼠的诱导使用梗塞区的中心动脉闭塞技术和可视化

Published: February 02, 2017
doi:

Summary

We describe a mouse model of stroke induced by the occlusion of the middle cerebral artery using a silicone coated suture. The protocol can be applied to induce permanent occlusion or a temporary ischemia, followed by reperfusion.

Abstract

Cerebrovascular disease is highly prevalent in the global population and encompasses several types of conditions, including stroke. To study the impact of stroke on tissue injury and to evaluate the effectiveness of therapeutic interventions, several experimental models in a variety of species were developed. They include complete global cerebral ischemia, incomplete global ischemia, focal cerebral ischemia, and multifocal cerebral ischemia. The model described in this protocol is based on the middle cerebral artery occlusion (MCAO) and is related to the focal ischemia category. This technique produces consistent focal ischemia in a strictly defined region of the hemisphere and is less invasive than other methods. The procedure described is performed on mice, given the availability of several genetic variants and the high number of tests standardized for mice to aid in the behavioral and neurodeficit evaluation.

Introduction

心血管疾病的研究中,如中风,依赖于使用的体内模型。理解局部缺血,药物毒性,和/或治疗的可能含义,有必要使用该疾病,从而使治疗组之间的比较研究的一个合适的,标准化的,可靠的和可再现的模型。在这个手稿中,我们使用的是老鼠,给予了大量的转基因小鼠和标准化的评估模型的有效性。耙分数来评估以下的实验缺血性卒中及以下恢复运动和行为障碍已经开发的1,2。

几个缺血性中风型号可供选择,如完整的全球脑缺血,不完全性缺血,多灶性脑缺血和脑缺血。后一组也是中风患者最常见的种类。大多数前夕NTS由栓塞或血栓闭塞的形成在或接近大脑中动脉(MCA)发起。鉴于这些参数,紧紧提出的模型模拟人类中风的疾病的病因,使获得高度相关的3个结果。尽管如此,从动物模型在人类疾病治疗的发现的翻译已被证明是具有挑战性的。截至目前,只有使用溶栓组织型纤溶酶原激活物已被批准用于治疗急性缺血性脑卒中4。

间在小鼠脑缺血,大脑后循环中风模型和脑静脉血栓形成模型的模型是高度侵入性,减少它们的适用性,并限制能够进行分析的范围。然而,其他技术如栓塞模型,photothrombosis模型,内皮素-1诱导的中风模型,和管腔内缝合大脑中动脉闭塞(MCAO)模型,可用于使用没有这些限制。在缺血模型在本协议中所述的技术。它提供了诱导可以容易地再灌注,并在高通量的方式进行局部脑缺血的可靠方法。有两种方法这一模式,即玉米,龙格和小泉的方法。它们在闭塞缝合插入脉管的方式略有不同。在玉米-隆加技术,缝线经由外颈动脉5插入。这里提出的技术是从在其中封闭缝合经由颈总动脉6插入小泉方法改性。

该MCAO模型已成功地应用于评估缺血性中风期间发生的不同事件。以下再灌注,脑水肿可以与血脑屏障的击穿可以观察到沿。山顶神经元死亡通常在24小时观察;然而,将其重新后7天7转动到基线水平。在人类中,性别和年龄的确定行程结果时,这也将在小鼠和大鼠8,9,10观察的重要变量。若干出版物已经使用了MCAO模型以证明处理效率11,12,13,14。

Protocol

所有的程序是由迈阿密机构动物护理和使用委员会(IACUC)的大学按照卫生研究院(NIH)的指导方针的国家机构的批准。需要无菌设备和无菌技术的使用。 1.准备缝合闭塞使用直径0.21毫米的缝合线20之间的小鼠 – 25克0.23毫米至25只小鼠 – 35克体重的。缝线的MCAO程序的类型的选择取决于动物的体重。 使用银笔,标记从涂硅尖开始9毫米缝合。这将作为插入长度的导…

Representative Results

为闭塞缝线的插入路径是表现在图1中 。在MCAO缝合要被路由到闭塞区域,在ICA中分叉。马华的成功闭塞会导致组织损伤,TTC染色可见。 图2呈现从假治疗的动物( 图2A)和从60分钟缺血缺血再灌注动物染色的图像(染色,在90分钟或24小时后的闭塞, 图2B)。为了确定每搏量,首先计算行程区的每个部分中,使用包括在成像…

Discussion

所描述的MCAO方法的成功应用是高度依赖于脑血流解剖学的理解。由于缝合线的正确位置是难以辨别,由于缺乏直接的视觉线索,反复练习很重要,将其用于调查研究之前掌握的过程。行程容积应分析,以确保一致的结果。增加了一个激光多普勒系统可以帮助确定血流的成功闭塞和应定期使用,以确保过程正确进行。路由MCAO缝合到闭塞区域可以通过操纵动脉来促进。为了帮助在缝线引导至MCA,一?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

We would like to thank Dr. Lei Chen (Icahn School of Medicine at Mount Sinai, NY) who first established this model in our laboratory. Supported in part by HL126559, DA039576, MH098891, MH63022, MH072567, DA027569, and NSC 2015/17/B/NZ7/02985. Dr. Luc Bertrand is supported in part by a postdoctoral fellowship from the American Heart Association (16POST31170002).

Materials

MCAO suture 0.23mm Doccol 702345PK5Re
MCAO suture 0.21mm Doccol 702145PK5Re
Silver pen staples 503205
Anesthesia machine Vetequip 901806
Surgical scissors Fine science tool 14558-09
Surgical forceps straight tip Fine science tool 00108-11
Surgical forceps angled tip Fine science tool 00109-11
Spring scissors Fine science tool 15000-08
Nylon suture Braintree scintific SUT-S 104
Closing suture VWR 95057-036
Isoflurane Piramal
2,3,5-Triphenyltetrazolium chloride FisherSci 50-121-8005
Brain block Braintree scintific BS-A 5000C
Cryostat blade VWR 89202-606
Optional:
Periflux Laser doppler system Perimed Periflux 5000
Monitoring unit Perimed PF 5010 – LDPM

Riferimenti

  1. Cuomo, O., et al. Antithrombin reduces ischemic volume, ameliorates neurologic deficits, and prolongs animal survival in both transient and permanent focal ischemia. Stroke. 38 (12), 3272-3279 (2007).
  2. Wauquier, A., Melis, W., Janssen, P. A. Long-term neurological assessment of the post-resuscitative effects of flunarizine, verapamil and nimodipine in a new model of global complete ischaemia. Neuropharmacology. 28 (8), 837-846 (1989).
  3. Liu, F., McCullough, L. D. Middle cerebral artery occlusion model in rodents: methods and potential pitfalls. J Biomed Biotechnol. 2011, 464701 (2011).
  4. Chiu, D., et al. Intravenous tissue plasminogen activator for acute ischemic stroke: feasibility, safety, and efficacy in the first year of clinical practice. Stroke. 29 (1), 18-22 (1998).
  5. Longa, E. Z., Weinstein, P. R., Carlson, S., Cummins, R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 20 (1), 84-91 (1989).
  6. Koizumi, J., Yoshida, Y., Nakazawa, T., Ooneda, G. Experimental studies of ischemic brain edema, I: a new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn J Stroke. 8, 1-8 (1986).
  7. Liu, F., Schafer, D. P., McCullough, L. D. TTC, fluoro-Jade B and NeuN staining confirm evolving phases of infarction induced by middle cerebral artery occlusion. J Neurosci Methods. 179 (1), 1-8 (2009).
  8. Liu, F., Yuan, R., Benashski, S. E., McCullough, L. D. Changes in experimental stroke outcome across the life span. J Cereb Blood Flow Metab. 29 (4), 792-802 (2009).
  9. Wang, R. Y., Wang, P. S., Yang, Y. R. Effect of age in rats following middle cerebral artery occlusion. Gerontology. 49 (1), 27-32 (2003).
  10. Baskerville, T. A., Macrae, I. M., Holmes, W. M., McCabe, C. The influence of gender on ’tissue at risk’ in acute stroke: A diffusion-weighted magnetic resonance imaging study in a rat model of focal cerebral ischaemia. J Cereb Blood Flow Metab. 36 (2), 381-386 (2016).
  11. Cai, Q., et al. Co-transplantation of hippocampal neural stem cells and astrocytes and microvascular endothelial cells improve the memory in ischemic stroke rat. Int J Clin Exp Med. 8 (8), 13109-13117 (2015).
  12. Cheng, Y., et al. Intravenously delivered neural stem cells migrate into ischemic brain, differentiate and improve functional recovery after transient ischemic stroke in adult rats. Int J Clin Exp Pathol. 8 (3), 2928-2936 (2015).
  13. Nagai, N., et al. Intravenous Administration of Cilostazol Nanoparticles Ameliorates Acute Ischemic Stroke in a Cerebral Ischemia/Reperfusion-Induced Injury Model. Int J Mol Sci. 16 (12), 29329-29344 (2015).
  14. Liu, Y., et al. Intravenous PEP-1-GDNF is protective after focal cerebral ischemia in rats. Neurosci Lett. 617, 150-155 (2016).
  15. Hedna, V. S., et al. Validity of Laser Doppler Flowmetry in Predicting Outcome in Murine Intraluminal Middle Cerebral Artery Occlusion Stroke. J Vasc Interv Neurol. 8 (3), 74-82 (2015).
  16. Tajima, Y., et al. Reproducibility of measuring cerebral blood flow by laser-Doppler flowmetry in mice. Front Biosci (Elite Ed). 6, 62-68 (2014).
  17. Fang, M., et al. Scutellarin regulates microglia-mediated TNC1 astrocytic reaction and astrogliosis in cerebral ischemia in the adult rats. BMC Neurosci. 16, 84 (2015).
  18. Evilsizor, M. N., Ray-Jones, H. F., Lifshitz, J., Ziebell, J. Primer for immunohistochemistry on cryosectioned rat brain tissue: example staining for microglia and neurons. J Vis Exp. (99), e52293 (2015).
  19. Kramer, M., et al. TTC staining of damaged brain areas after MCA occlusion in the rat does not constrict quantitative gene and protein analyses. J Neurosci Methods. 187 (1), 84-89 (2010).
  20. Wu, L., et al. Keep warm and get success: the role of postischemic temperature in the mouse middle cerebral artery occlusion model. Brain Res Bull. 101, 12-17 (2014).
  21. Liu, S., Zhen, G., Meloni, B. P., Campbell, K., Winn, H. R. Rodent Stroke Model Guidelines for Preclinical Stroke Trials (1st Edition). J Exp Stroke Transl Med. 2 (2), 2-27 (2009).
  22. Tsuchiya, D., Hong, S., Kayama, T., Panter, S. S., Weinstein, P. R. Effect of suture size and carotid clip application upon blood flow and infarct volume after permanent and temporary middle cerebral artery occlusion in mice. Brain Res. 970 (1-2), 131-139 (2003).
  23. Wolff, G., Davidson, S. J., Wrobel, J. K., Toborek, M. Exercise maintains blood-brain barrier integrity during early stages of brain metastasis formation. Biochem Biophys Res Commun. 463 (4), 811-817 (2015).
  24. Wrobel, J. K., Wolff, G., Xiao, R., Power, R. F., Toborek, M. Dietary Selenium Supplementation Modulates Growth of Brain Metastatic Tumors and Changes the Expression of Adhesion Molecules in Brain Microvessels. Biol Trace Elem Res. , (2015).
  25. Chen, L., Swartz, K. R., Toborek, M. Vessel microport technique for applications in cerebrovascular research. J Neurosci Res. 87 (7), 1718-1727 (2009).
check_url/it/54805?article_type=t

Play Video

Citazione di questo articolo
Bertrand, L., Dygert, L., Toborek, M. Induction of Ischemic Stroke and Ischemia-reperfusion in Mice Using the Middle Artery Occlusion Technique and Visualization of Infarct Area. J. Vis. Exp. (120), e54805, doi:10.3791/54805 (2017).

View Video