Summary

猴免疫缺陷病毒特异性CD8分析<sup> +</sup> T细胞猕猴由肽MHC-I四聚体染色

Published: December 23, 2016
doi:

Summary

在这里,我们提出了针对艾滋病病毒枚举和表征猕猴CD8 + T细胞的优化协议。本文不仅对HIV免疫学领域,而且也适用于 CD8 + T细胞应答已知影响疾病结果的生物医学研究的其它领域是有用的。

Abstract

肽主要组织相容性复合体I类(的pMHC-I)四聚体一直一个宝贵的工具来研究CD8 + T细胞反应。因为这些试剂直接结合到T细胞受体CD8 + T淋巴细胞的表面上,荧光染料标记的pMHC-I四聚体使抗原的精确检测(银)特异性CD8 + T细胞,而无需在体外重新-stimulation。此外,当多色组合流式细胞仪,的pMHC-I四聚体染色可以揭示抗原特异性CD8 + T细胞的重要方面,包括分化阶段,记忆表型,和激活状态。这些类型的分析已经在HIV免疫学领域特别有用 CD8 + T细胞可影响发展为艾滋病。猴免疫缺陷病毒的猕猴(SIV)的实验感染提供了一个宝贵的工具来研究针对艾滋病病毒的细胞免疫功能。其结果是,相当大的逐行SS已经在该动物模型定义和表征T细胞应答已取得。在这里,我们提出了一个优化的协议用于通过的pMHC-I四聚体染色猕猴列举SIV-特异性CD8 + T细胞。我们的测定法允许每测试二的pMHC-I四聚体+ CD8 + T细胞群,这可能是用于跟踪由疫苗接种或SIV感染产生SIV-特异性CD8 + T细胞应答有用的同时定量和存储器表型。考虑在生物医学研究非人灵长类动物的相关性,这种方法适用于多种疾病设定学习 CD8 + T细胞应答。

Introduction

CD8 + T细胞包含适应性免疫系统的重要组成部分,因为它们参与肿瘤免疫监视和向细胞内病原体1根除。简单来说,CD8 + T细胞表达特异性识别肽-主要组织相容性复合体I类(的pMHC-I)中的T细胞受体(TCR)的分子存在于宿主细胞的质膜。因为这些肽是从内源性合成的蛋白的水解产生的,细胞表面的pMHC-I复合物提供了一个窗口,进入细胞内环境。在病毒感染,例如,感染的细胞将显示含有病毒蛋白衍生肽,可以作为配体被巡逻的CD8 + T细胞中表达的TCR的MHC-I类分子。在一个特定的病毒特异性CD8 + T细胞遇到感染细胞呈递其的pMHC-1配体的情况下,T细胞受体接合将导致CD8 + T细胞的激活和大招三方共同导致靶细胞裂解。鉴于这些TCR /的pMHC-I相互作用的关键特性,确定了震级,特异性和响应CD8 + T细胞表型往往能揭示人类疾病的重要线索。

直到20世纪90年代初,抗原特异性CD8 + T细胞的量化依靠技术要求有限稀释法(LDA)2,3-。不仅在LDA需要数天才能完成,因此也未能检测缺乏增殖潜能的细胞。其结果是,在LDA大大低估抗原(抗原)特异性 CD8 +参与免疫应答的T细胞的实际频率。虽然ELISPOT和细胞内细胞因子染色测定的发展极大地提高测量细胞免疫的能力,这些方法仍然需要在体外刺激用于定量抗原特异性T细胞4。但直到1996年的奥特曼,戴维斯和科尔eagues发表了具有里程碑意义的文章报告的pMHC-I技术的四聚体5的发展。临界该技术的成功是的pMHC-I类分子,其延伸的TCR /的pMHC-Ⅰ相互作用的半衰期,从而减少的pMHC-I四聚体中流式细胞测定法的洗涤步骤脱落的概率的多聚化。的pMHC-I四聚体在上述测定法的主要优点是能够精确地直接离体检测抗原特异性CD8 + T细胞,而无需在体外再刺激的能力。此外,具有多色彩的pMHC-I四聚体染色的组合流式细胞仪已经允许分化阶段,记忆表型,和Ag特异性CD8 + T-细胞2-4的激活状态的详细分析。在最近对通过表征 CD8 + T细胞所有组成成分的技术进步的光的pMHC-Ⅰ多聚体染色6,应用FO广度R此方法很可能会继续扩大。

在生物医学研究领域很少有比艾滋病病毒免疫学7领域受益更多来自的pMHC-I四聚体染色。虽然CD8 + T细胞曾与由奥特曼,戴维斯和同事8,9出版时HIV病毒血症的初步控制了时间相关的,在随后的几年中使用的pMHC-I四聚体的显著扩大了我们的理解的HIV特异性CD8 + T细胞应答。例如,的pMHC-I四聚体染色帮助确认病毒特异性CD8 + T细胞反应在大多数HIV感染者10-12强劲的大小。这种方法还促进艾滋病毒和SIV特异性CD8 + T细胞应答的通过与在不存在的被称为“精英控制”抗逆转录病毒治疗,这种现象的病毒复制的自发控制相关的MHC-I类分子限制的表征<suP> 13-15。此外,的pMHC-I四聚体是在建立程序性死亡-1(PD-1)/ PD配体1(PD-L1)的轴作为可逆通路中的HIV特异性CD8 + T细胞的不受控制的慢性感染的功能失调的表型器乐16,17。总的来说,这些研究强调的pMHC-I四聚体的效用用于监测针对爱滋病病毒 CD8 + T细胞应答。

猕猴( 猕猴 )的实验SIV感染仍然是防治艾滋病毒/艾滋病18,19评估免疫干预的最佳动物模型。在过去的25年中,实质性的进展已在SIV-特异性CD8 + T细胞在此猴类的鉴定和表征制成,包括MHC-I等位基因的发现和肽结合基序13,20-27的定义。其结果是,的pMHC-I四聚体已经开发了用于SIV-特异性CD8 + T细胞的分析在这种动物模型28的反应。大多数这些试剂是由四猕猴MHC-I等位基因的基因产物: 马目-A1 * 001,马目-A1 * 002:01,马目-B * 008:01,马目-B * 017:01。值得注意的是,猕猴不发表MHC-C座29。绝大多数在本实验中使用的的pMHC-I四聚体均在埃默里大学美国国立卫生研究院四聚体核心工厂生产。然而,一些这些试剂,包括结合到免疫的Gag CM9表位马目-A1 * 001四聚体,只能从由于许可协议商业来源获得。四个猕猴等位基因使用的pMHC-I四聚体以上列出的,我们已经成功地枚举CD8 + T细胞对共21 SIV抗原表位( 表1),这是诱导疫苗接种或主SIV感染30,31(马丁等人 ,未发表意见)。

本稿件提供优化的pMHC-I四聚体染色方案,用于确定在恒河猴SIV-特异性CD8 + T细胞的频率和存储器的表型。为了降低TCR内化,从而改善的pMHC-I四聚体染色32;该测定用择孵育30分钟与蛋白激酶抑制剂(这里,达沙替尼使用PKI)的开始。 01四聚体:如下所述,使用马目-B * 017时这种处理是非常有用的。还提供了关于如何标记与荧光标记的pMHC-I四聚体和单克隆抗体(mAb)的细胞的指示。该协议还包括用于将细胞溶解相关分子颗粒酶B(GZM B)的细胞内检测一个细胞透步骤。抗CD3的mAb在此步骤中加入,以及改进这种TCR信号分子的检测。作为参考,在这种染色面板使用的所有荧光被列出。

Protocol

在这个手稿中使用的外周血单个核细胞(PBMC)样品从设在威斯康星州国家灵长类动物研究中心的印度猕猴获得。这些动物在威斯康星研究生院动物护理和使用委员会33的大学批准的方案下,根据Weatherall报告进行照顾。麻醉下进行所有动物的程序并作出一切努力,以减少潜在的痛苦。 1.治疗PKI 注意:这是可选的,但建议马牧-B * 017:01四聚体。查看结果和讨论部…

Representative Results

这里所描述的协议已被用来确定在一个马目-A1 * 001 +猕猴的疫苗诱导的,的Gag CM9特异性CD8 + T细胞应答的大小和存储器的表型。对于这种分析,在一个8色流式细胞术染色面板用的APC-缀合马目-A1 * 001 /加格CM9四聚体。 图1A – F显示用于分析数据,这应适用于存在于每个测试两个四聚体门控策略。需要注意的是的pMHC-I四聚体+ CD8 + …

Discussion

在此过程中值得讨论的有几个步骤,因为它们是产生最佳效果的关键。首先,由于生物样本的质量是任何流式细胞测定法38的成功的一个强有力的预测,都必须小心,以确保细胞是染色过程中存活,并在悬浮液中。与冷冻保存的样品时,因为它们更容易结块和通常含有死细胞的更高数量,这是特别相关的。在这些情况下,通过将细胞悬浮液通过的pMHC-I四聚体标记过程之前的70微米的细胞滤?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们要感谢大卫·沃特金斯支持,使该方法存在的优化实验。研究本出版物中报道了由迈阿密中心的美国国立卫生研究院艾滋病研究下奖号P30AI073961提供一个试点补助的部分资助。内容完全是作者的责任,并不一定代表美国国立卫生研究院的官方意见。

Materials

Dasatinib Axon medchem Axon 1392 Must be resuspended in DMSO and immediately stored at -20°C
RPMI w/ Glutamax gibco/ Life Technologies 61870-036 Must be stored at 4 °C 
Heat Inactivated FBS gibco/ Life Technologies 10082-147 Must be stored at 4 °C 
Penicillin-Streptomycinp-Amphotericin B Lonza 17-745E Must be stored at 4 °C 
DMSO, Anhydrous Life Technologies D12345 Store at room temperature.
5-mL Round-Bottom Polypropylene Tubes VWR 60819-728
Fluorochrome-conjugated pMHC-I tetramers NIH Tetramer Core or MBL, Inc. Must be stored and maintained at  4 °C. Centrifuge at 20,000 x g for 15 min before use. Do not freeze.
Fluorochrome-conjugated mAbs Various companies Must be stored and maintained at  4 °C. Do not freeze.
LIVE/DEAD Fixable Aqua Dead Cell Stain Kit Life Technologies l34957 Must be stored at -20 °C. Resuspend each aliquot in 50 μL of DMSO prior to use.
Brilliant Stain Buffer BD Biosciences 563794 Must be stored at  4 °C 
Phosphate Buffered Saline VWR 97064-158 Store at room temperature
Albumine Bovine VWR 700011-230 Must be stored at  4 °C 
Sodium Azide VWR 97064-646 Store at room temperature. Toxic substance. Do not mix with bleach.
Bleach VWR 89501-620 Corrosive chemical, cannot be mixed with sodium azide. Handle with care
Paraformaldehyde Electron Microscopy Sciences 15714-S Flammable, corrosive, and toxic reagent. Handle with care
Polysorbate 20 (Tween-20) Alfa Aesar L15029 Store at room temperature
Permeabilization Solution 2  BD Biosciences 340973 Toxic and corrosive reagent. Handle with care
Sarsdet Tubes 1.5mL screw top VWR 72.692.005
2.0ml DNA/RNA Low bind Tubes Eppendorf 22431048 The use of Sterile microtubes is preffered 
Vortex mixer To discretion of scientist
Biosafety Cabinet  To discretion of scientist
Milli Q Intergral Water Purification system EMD Millipore ZRXQ010WW Molecular Biology grade water from any provider may be used
Microcentrifuge To discretion of scientist
Centrifuge To discretion of scientist
4 °C  refrigerator To discretion of scientist
BD LSR II BD Biosciences Flow cytometer must contain lasers and filters that are compatible with the staining panel used.
Deionized water
Aluminum Foil VWR SCIENTIFIC INC. 89068-738
Incubator Must be able to maintain 37 °C  internal temperature
FACS Diva software BD Biosciences
Flowjo software version 9.6 Flowjo Used to analyze FCS files generated by FACS Diva software
Micropippette tips

Riferimenti

  1. Parham, P., Foltin, J., Masson, S., Ghezzi, K., Engels, A., Lawrence, E., Jeffcock, E. Antigen Recognition by T Lymphocytes. The Immune System, 3rd ed. , 125-154 (2009).
  2. Doherty, P. C. The tetramer transformation. J Immunol. 187 (1), 5-6 (2011).
  3. Masopust, D., Vezys, V., Wherry, E. J., Ahmed, R. A brief history of CD8 T cells. Eur J Immunol. 37, 103-110 (2007).
  4. Murali-Krishna, K., et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity. 8 (2), 177-187 (1998).
  5. Altman, J. D., et al. Phenotypic analysis of antigen-specific T lymphocytes. Science. 274 (5284), 94-96 (1996).
  6. Davis, M. M., Altman, J. D., Newell, E. W. Interrogating the repertoire: broadening the scope of peptide-MHC multimer analysis. Nat Rev Immunol. 11 (8), 551-558 (2011).
  7. Walker, B., McMichael, A. The T-cell response to HIV. Cold Spring Harb Perspect Med. 2 (11), (2012).
  8. Borrow, P., Lewicki, H., Hahn, B. H., Shaw, G. M., Oldstone, M. B. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J Virol. 68 (9), 6103-6110 (1994).
  9. Koup, R. A., et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol. 68 (7), 4650-4655 (1994).
  10. Gray, C. M., et al. Frequency of class I HLA-restricted anti-HIV CD8+ T cells in individuals receiving highly active antiretroviral therapy (HAART). J Immunol. 162 (3), 1780-1788 (1999).
  11. Papagno, L., et al. Comparison between HIV- and CMV-specific T cell responses in long-term HIV infected donors. Clin Exp Immunol. 130 (3), 509-517 (2002).
  12. Spiegel, H. M., et al. Human immunodeficiency virus type 1- and cytomegalovirus-specific cytotoxic T lymphocytes can persist at high frequency for prolonged periods in the absence of circulating peripheral CD4(+) T cells. J Virol. 74 (2), 1018-1022 (2000).
  13. Loffredo, J. T., et al. Patterns of CD8+ immunodominance may influence the ability of Mamu-B*08-positive macaques to naturally control simian immunodeficiency virus SIVmac239 replication. J Virol. 82 (4), 1723-1738 (2008).
  14. Migueles, S. A., et al. HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proc Natl Acad Sci U S A. 97 (6), 2709-2714 (2000).
  15. Valentine, L. E., et al. Infection with “escaped” virus variants impairs control of simian immunodeficiency virus SIVmac239 replication in Mamu-B*08-positive macaques. J Virol. 83 (22), 11514-11527 (2009).
  16. Day, C. L., et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature. 443 (7109), 350-354 (2006).
  17. Trautmann, L., et al. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat Med. 12 (10), 1198-1202 (2006).
  18. Mudd, P. A., Watkins, D. I. Understanding animal models of elite control: windows on effective immune responses against immunodeficiency viruses. Curr Opin HIV AIDS. 6 (3), 197-201 (2011).
  19. Valentine, L. E., Watkins, D. I. Relevance of studying T cell responses in SIV-infected rhesus macaques. Trends Microbiol. 16 (12), 605-611 (2008).
  20. Allen, T. M., et al. Characterization of the peptide binding motif of a rhesus MHC class I molecule (Mamu-A*01) that binds an immunodominant CTL epitope from simian immunodeficiency virus. J Immunol. 160 (12), 6062-6071 (1998).
  21. Allen, T. M., et al. CD8(+) lymphocytes from simian immunodeficiency virus-infected rhesus macaques recognize 14 different epitopes bound by the major histocompatibility complex class I molecule mamu-A*01: implications for vaccine design and testing. J Virol. 75 (2), 738-749 (2001).
  22. Kaizu, M., et al. Molecular typing of major histocompatibility complex class I alleles in the Indian rhesus macaque which restrict SIV CD8+ T cell epitopes. Immunogenetics. 59 (9), 693-703 (2007).
  23. Loffredo, J. T., et al. Identification of seventeen new simian immunodeficiency virus-derived CD8+ T cell epitopes restricted by the high frequency molecule, Mamu-A*02, and potential escape from CTL recognition. J Immunol. 173 (8), 5064-5076 (2004).
  24. Loffredo, J. T., Valentine, L. E., Watkins, D. I. Beyond Mamu-A*01+ Indian Rhesus Macaques: Continued Discovery of New MHC Class I Molecules that Bind Epitopes from the Simian AIDS Viruses. HIV mol immunol. 2007, 29-51 (2006).
  25. Loffredo, J. T., et al. Two MHC class I molecules associated with elite control of immunodeficiency virus replication, Mamu-B*08 and HLA-B*2705, bind peptides with sequence similarity. J Immunol. 182 (12), 7763-7775 (2009).
  26. Mothe, B. R., et al. Characterization of the peptide-binding specificity of Mamu-B*17 and identification of Mamu-B*17-restricted epitopes derived from simian immunodeficiency virus proteins. J Immunol. 169 (1), 210-219 (2002).
  27. Miller, M. D., Yamamoto, H., Hughes, A. L., Watkins, D. I., Letvin, N. L. Definition of an epitope and MHC class I molecule recognized by gag-specific cytotoxic T lymphocytes in SIVmac-infected rhesus monkeys. J Immunol. 147 (1), 320-329 (1991).
  28. Kuroda, M. J., et al. Analysis of Gag-specific cytotoxic T lymphocytes in simian immunodeficiency virus-infected rhesus monkeys by cell staining with a tetrameric major histocompatibility complex class I-peptide complex. J Exp Med. 187 (9), 1373-1381 (1998).
  29. Otting, N., et al. Unparalleled complexity of the MHC class I region in rhesus macaques. Proc Natl Acad Sci U S A. 102 (5), 1626-1631 (2005).
  30. Martins, M. A., et al. Vaccine-Induced Simian Immunodeficiency Virus-Specific CD8+ T-Cell Responses Focused on a Single Nef Epitope Select for Escape Variants Shortly after Infection. J Virol. 89 (21), 10802-10820 (2015).
  31. Mudd, P. A., et al. Vaccine-induced CD8+ T cells control AIDS virus replication. Nature. 491 (7422), 129-133 (2012).
  32. Lissina, A., et al. Protein kinase inhibitors substantially improve the physical detection of T-cells with peptide-MHC tetramers. J Immunol Methods. 340 (1), 11-24 (2009).
  33. Weatherall, D. . The use of non-human primates in research. A working group report. , 152 (2006).
  34. Betterton, E. A., Lowry, J., Ingamells, R., Venner, B. Kinetics and mechanism of the reaction of sodium azide with hypochlorite in aqueous solution. J Hazard Mater. 182 (1-3), 716-722 (2010).
  35. Picker, L. J., et al. IL-15 induces CD4 effector memory T cell production and tissue emigration in nonhuman primates. J Clin Invest. 116 (6), 1514-1524 (2006).
  36. Dolton, G., et al. More tricks with tetramers: a practical guide to staining T cells with peptide-MHC multimers. Immunology. 146 (1), 11-22 (2015).
  37. Wooldridge, L., Lissina, A., Cole, D. K., vanden Berg, H. A., Price, D. A., Sewell, A. K. Tricks with tetramers: how to get the most from multimeric peptide-MHC. Immunology. 126 (2), 147-164 (2009).
  38. Roederer, M., Herzenberg, L. A., Weir, D. M., Blackwell, C., et al. FACS Analysis of Leukocyes. Weir’s Handbook of Experimental Immunology, 5th ed. , 1-49 (1996).
  39. Colantonio, A. D., et al. KIR polymorphisms modulate peptide-dependent binding to an MHC class I ligand with a Bw6 motif. PLoS Pathog. 7 (3), e1001316 (2011).
  40. Schafer, J. L., et al. Suppression of a Natural Killer Cell Response by Simian Immunodeficiency Virus Peptides. PLoS Pathog. 11 (9), 1005145 (2015).
check_url/it/54881?article_type=t

Play Video

Citazione di questo articolo
Gonzalez-Nieto, L., Domingues, A., Ricciardi, M., Gutman, M. J., Maxwell, H. S., Pedreño-Lopez, N., Bailey, V., Magnani, D. M., Martins, M. A. Analysis of Simian Immunodeficiency Virus-specific CD8+ T-cells in Rhesus Macaques by Peptide-MHC-I Tetramer Staining. J. Vis. Exp. (118), e54881, doi:10.3791/54881 (2016).

View Video