Summary

一个简单的方法来衡量在改建悬赏寻求行为使用<em>果蝇</em

Published: December 15, 2016
doi:

Summary

我们描述诱导奖励和nonrewarding使用乙醇自愿消费在奖励状态变化的措施果蝇( 果蝇 )经验的协议。

Abstract

我们描述了测量在果蝇中乙醇的自我管理( 果蝇 )作为在奖励状态的变化代理的协议。我们展示了一个简单的方法来挖掘成飞奖励系统,修改相关的自然奖励的经验,并使用自愿乙醇消耗量作为用于奖励状态的变化的量度。该方法可作为相关的工具来研究发挥内部状态的经验介导的变化作用的神经元和基因。该协议是由两个分立部件:苍蝇暴露于奖励和nonrewarding经验,并测定自愿乙醇消费为动机的量度,以获得药物奖励。这两个部分可以独立使用,以诱导经历调制作为用于进一步的下游分析的初始步骤或作为一个独立的两选择馈送测定法,分别。该协议不需要复杂的设置,因此可以在任何laborator施加y随基本飞行文化工具。

Introduction

响应于经验行为的修改允许动物来调节他们的环境1其行为的变化。在此过程中,动物与外部环境的不断变化的条件整合其内部的生理状态,随后选择通过另外一个动作,以增加他们的生存和繁殖的机会。奖励制度演变来激励那些通过加强增强即时生存的行为,如吃或喝,或那些确保长期生存,如性行为或照顾子女需要2个人和物种的生存行为。如滥用药物人工化合物也由调解自然奖励2增选神经通路影响奖励制度。

在过去的二十年中,果蝇果蝇已被确立为一个有前途的模型研究molecular和塑造对行为3,4乙醇的影响神经机制。

此前,我们已经确定肽能神经元的果蝇的一个子集(NPF / NPF受体(R)神经元)的夫妻自然奖励,如性经验,获得奖励药物5的动机。 NPF表达双方的性经验和药物的奖励,如乙醇中毒敏感。在NPF表达水平的变化转换为改建乙醇自我管理5,其中高NPF降低和低NPF增加了优先消耗酒精。激活NPF神经元是有益的苍蝇,因为它们显示为具有激活,这也是由减少的乙醇消耗量反射配对的气味强烈偏好。更重要的是,NPF神经元的激活与苍蝇,形成乙醇中毒和气味线索之间的正相关关系的能力干扰。在NPF / R之间的因果关系系统奖励的内存,和乙醇消费量表明,人们可以使用乙醇自我管理作为一项措施在国家奖励5的变化。

在本出版物中,我们证明了窃听到飞自然奖励制度和化验改变奖励状态的综合办法。该方法由两个单独的部分,用于操纵天然奖励相关的经验训练协议,接着两选择毛细管馈线测定(CAFE)评估乙醇自身给药作为在奖励状态的变化的估计。该CAFE测定是类似于在啮齿类动物的研究用于药物自我给药的二瓶的选择测定法和已显示,以反映在苍蝇6成瘾样行为的某些特性。

Protocol

注:实验设计的总体概述:实验设计包括求偶抑制7-9中雄蝇超过4天的过程中受到奖励和nonrewarding经验,连续3次培训课程的改编协议。 4天 – 在经验阶段结束,苍蝇都在两选择自愿乙醇消费测定法3进行测试。此处的协议包括几个准备步骤,其中的一些可以预先做在一个以上的实验中使用,而另一些应的实验( 表1)的开始前发生及时。 1.预备步骤准备毛细管馈线?…

Representative Results

FPreviously,Devineni 等。表明,当果蝇被赋予选择服用含乙醇的食品,它们显示超过食品含有6 nonethanol含乙醇的食品有强烈的偏好。这里显示的是测定天真雄蝇的先天乙醇偏好未经过培训协议时,我们获得了一些有代表性的成果。 朴素广的男蝇成虫羽化后收集,年龄,直到4日龄,并测定其与生俱来的偏爱超过4天?…

Discussion

Here, we illustrate the details of an integrated approach to measure alterations in reward-seeking behavior, based on previous work described by Devineni et al.6 and Shohat-Ophir et al5. The first section of the protocol uses different types of sexual interactions as the experience input, and the second section uses a two-choice feeding assay to assess the effect of experience on the preference to consume ethanol.

As shown by Devineni et al.<sup…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们感谢U.赫伯利和A. Devineni长期持久的讨论和技术咨询。我们也感谢肖哈特 – 奥弗实验室成员,A. Benzur,L. Kazaz和O.沙洛姆与演示方法的帮助。特别感谢去埃利泽COSTI在实验室建立的飞行系统。这项工作是由以色列科学基金会(14分之384)和玛丽·居里职业集成补助(CIG 631127)的支持。

Materials

Polystyrene 25 x 95mm Vials FlyStuff 32-109
narrow plastic vials flugs FlyStuff 42-102
Disposable Sterile Needle 18G and 27G  can be acquired by any company 1.20 X 38mm (18Gx1 1/2") , 0.40 X 13mm (27Gx1/2")
10x75mm Borosilicate Glass Disposable Culture Tubes kimble chase 73500-1075
calibrated pipets 5ul (microliter) VWR 53432-706 color coded white to contain 5 microliters
Mineral Oil  Sigma-Aldrich  M5904
Sucrose, Molecular Biology Grade CALBIOCHEM 573113
Yeast extract Powder for microbiology can be acquired by any company
Ethanol Sigma-Aldrich  32221
standard pipette Tips (micro-pipets) ThermScientific T114R-Q volume- 0.1-20 ul Ultra micro
IDENTI-PLUGS (Foam Tube Plugs) Jaece L800-A fits opening 6 to 13mm
IDENTI-PLUGS (Foam Tube Plugs) Jaece L800-D fits opening 35 to 45mm
virginator fly stock  bloomington drosophila stock center #24638
Narrow Vials, Tray Pack (PS) Genesee Scientific Corporation  # 32-109BR
Drosophila Media Recipes and Methods Bloomington Drosophila Stock Center http://flystocks.bio.indiana.edu/Fly_Work/media-recipes/molassesfood.htm
propionic acid Sigma-Aldrich  P5561
phosphoric acid Sigma-Aldrich  W290017
Methl 4-Hydroxybenzoate Sigma-Aldrich  H3647
Agar Agar can be acquired by any company
corn meal can be acquired by any company
Grandma's molasses B&G Foods, Inc not indicated
instant dry yeast can be acquired by any company

Riferimenti

  1. Robinson, G. E., Fernald, R. D., Clayton, D. F. Genes and social behavior. Science. 322, 896-900 (2008).
  2. Koob, G. F. Neurobiological substrates for the dark side of compulsivity in addiction. Neuropharmacol. 56, 18-31 (2009).
  3. Kaun, K. R., Devineni, A. V., Heberlein, U. Drosophila melanogaster as a model to study drug addiction. Hum Genet. 131, 959-975 (2012).
  4. Devineni, A. V., Heberlein, U. Addiction-like behavior in Drosophila. Commun Integr Biol. 3, 357-359 (2010).
  5. Shohat-Ophir, G., Kaun, K. R., Azanchi, R., Mohammed, H., Heberlein, U. Sexual deprivation increases ethanol intake in Drosophila. Science. 335, 1351-1355 (2012).
  6. Devineni, A. V., Heberlein, U. Preferential ethanol consumption in Drosophila models features of addiction. Curr Biol : CB. 19, 2126-2132 (2009).
  7. McBride, S. M., et al. Mushroom body ablation impairs short-term memory and long-term memory of courtship conditioning in Drosophila melanogaster. Neuron. 24, 967-977 (1999).
  8. Ejima, A., Smith, B. P., Lucas, C., Levine, J. D., Griffith, L. C. Sequential learning of pheromonal cues modulates memory consolidation in trainer-specific associative courtship conditioning. Curr Biol. 15, 194-206 (2005).
  9. Ejima, A., et al. Generalization of courtship learning in Drosophila is mediated by cis-vaccenyl acetate. Curr Biol. 17, 599-605 (2007).
  10. Keleman, K., Kruttner, S., Alenius, M., Dickson, B. J. Function of the Drosophila CPEB protein Orb2 in long-term courtship memory. Nat Neurosci. 10, 1587-1593 (2007).
  11. Kaun, K. R., Azanchi, R., Maung, Z., Hirsh, J., Heberlein, U. A Drosophila model for alcohol reward. Nat Neurosci. 14, 612-619 (2011).
  12. Xu, S., et al. The propensity for consuming ethanol in Drosophila requires rutabaga adenylyl cyclase expression within mushroom body neurons. Genes Brain Behav. 11, 727-739 (2012).
  13. Devineni, A. V., Heberlein, U. The evolution of Drosophila melanogaster as a model for alcohol research. Annu Rev Neurosci. 36, 121-138 (2013).
  14. Ro, J., Harvanek, Z. M., Pletcher, S. D. FLIC: high-throughput, continuous analysis of feeding behaviors in Drosophila. PloS one. 9, 101107 (2014).
  15. Itskov, P. M., et al. Automated monitoring and quantitative analysis of feeding behaviour in Drosophila. Nat Commun. 5, 4560 (2014).
  16. Yapici, N., Cohn, R., Schusterreiter, C., Ruta, V., Vosshall, L. B. A Taste Circuit that Regulates Ingestion by Integrating Food and Hunger Signals. Cell. 165, 715-729 (2016).
  17. Peru, Y. C., et al. Long-lasting, experience-dependent alcohol preference in Drosophila. Addict Biol. 19, 392-401 (2014).
  18. Dus, M., et al. Nutrient Sensor in the Brain Directs the Action of the Brain-Gut Axis in Drosophila. Neuron. 87, 139-151 (2015).
  19. Anderson, D. J., Adolphs, R. A framework for studying emotions across species. Cell. 157, 187-200 (2014).
  20. Gibson, W. T., et al. Behavioral responses to a repetitive visual threat stimulus express a persistent state of defensive arousal in Drosophila. Curr Biol. 25, 1401-1415 (2015).
check_url/it/54910?article_type=t

Play Video

Citazione di questo articolo
Zer, S., Ryvkin, J., Wilner, H. J., Zak, H., Shmueli, A., Shohat-Ophir, G. A Simple Way to Measure Alterations in Reward-seeking Behavior Using Drosophila melanogaster. J. Vis. Exp. (118), e54910, doi:10.3791/54910 (2016).

View Video