Summary

简单的力量:海胆胚胎作为<em>体内</em>对于研究复杂的细胞与细胞间信号传导网络交互开发模式

Published: February 16, 2017
doi:

Summary

这个视频文章详细描述可用于系统地和有效地描述在许多脊椎动物胚胎复杂的信号通路和调控网络的组件的体内方法直截了当。

Abstract

Remarkably few cell-to-cell signal transduction pathways are necessary during embryonic development to generate the large variety of cell types and tissues in the adult body form. Yet, each year more components of individual signaling pathways are discovered, and studies indicate that depending on the context there is significant cross-talk among most of these pathways. This complexity makes studying cell-to-cell signaling in any in vivo developmental model system a difficult task. In addition, efficient functional analyses are required to characterize molecules associated with signaling pathways identified from the large data sets generated by next generation differential screens. Here, we illustrate a straightforward method to efficiently identify components of signal transduction pathways governing cell fate and axis specification in sea urchin embryos. The genomic and morphological simplicity of embryos similar to those of the sea urchin make them powerful in vivo developmental models for understanding complex signaling interactions. The methodology described here can be used as a template for identifying novel signal transduction molecules in individual pathways as well as the interactions among the molecules in the various pathways in many other organisms.

Introduction

基因调控网络(GRNS)和信号转导途径建立胚胎发育过程中的基因被用于构建成年动物体计划的空间和时间表达。细胞至细胞的信号转导途径是这些调控网络的基本组成部分,提供了由该小区进行通信的装置。这些细胞相互作用建立和胚胎1,2中提炼的和之间的各种地区管理和分化的基因的表达。分泌细胞外调制器(配体,拮抗剂),受体和共受体之间的相互作用控制的信号转导途径的活性。细胞内分子的各种各样转导导致改变的基因表达,分裂,和/或形状的小区的这些输入。虽然许多在主要途径在细胞外和细胞内水平所使用的关键分子是公知的,它是由于在很大程度上各个信号通路的复杂性的不完整的知识。此外,不同的信号传导途径常常彼此正或负的细胞外,细胞内相互作用或者,和转录水平3,4,5,6。重要的是,信号转导通路的核心组件是高度保守的所有后生动物物种,并且,显着地,大部分的主要信号传导途径经常在许多物种中特定比较从密切相关的生物门生物体时执行类似的发展功能7,8,9, 10,11。

在开发过程中的信令的研究是在任何生物一个艰巨的任务,并有是在大多数后口模型(脊椎动物,无脊椎动物脊索动物,半索动物和棘皮)学习信号通路几个显著挑战:1)在脊椎动物中有大量的可能的配体和受体/共同调制的相互作用,细胞内的转导分子,以及由于基因组12,13,14的复杂性不同的信号通路之间潜在的相互作用; 2)配合物的形态和形态发生的运动在脊椎动物常常使其更难以解释在与信号转导途径之间的功能相互作用; 3)在多数非棘皮动物脊椎动物后口模型物种分析由孕的短窗口具有一些被囊动物物种15,16的异常的限制。

该海胆胚胎具有几个上述限制并提供了许多独特的品质在体内进行信号转导途径的详细分析。这些包括如下:1)在海胆基因组的相对简单显著减少了可能的配体,受体/共受体和细胞内转导分子的数量的相互作用17; 2)控制胚层和主要胚胎轴的说明书和构图的GRNS被很好地建立在海胆的胚胎,在细胞/地区的调节上下文的帮助理解接收的信号18,19; 3)许多信号转导通路可以早期卵裂和原肠阶段之间,当胚胎是由单层上皮细胞的形态比较容易分析进行研究; 4)涉及的分子d。在信令海胆很容易操纵的途径; 5)很多海胆都妊娠一年( 如紫色球海胆Lytechinus 10 斑叶至11个月)。

在这里,我们提出了一个方法,系统地,高效地刻画指定和海胆胚胎模式的领土,说明这几个无脊椎动物模型系统在复杂的分子机制研究提供了优势的信号通路的组成部分。

Protocol

1.高通量吗啉设计策略鉴定感兴趣的基因(多个)( 例如 ,候选基因的方法,顺式调控分析,RNA测序和/或蛋白质组差动屏幕)。 使用基因组,转录组和可用的基因表达数据上经常更新的网站( 如 SpBase http://www.echinobase.org 20和S紫石基因搜寻的http:///urchin.nidcr.nih.gov/blast/index html的),以确定的时空表达谱与所讨论的发育机制重叠。如果没有表?…

Representative Results

在海胆胚胎我们已经表明,3种不同的Wnt信号分支(的Wnt /β-catenin的,Wnt基因/ JNK,和Wnt / PKC)4,25相互作用形成在管辖前后(AP)的图案形成一个Wnt信号网络。其中的一个信号事件的最重要的结果是,初始广泛表达前神经外胚层(ANE)GRN变得由原肠胚形成的开始(24高倍视野在S紫石 )限制到周围的前极小领土。这些结果?…

Discussion

这里介绍的方法是..许多实验室正在早期海胆发育期间使用类似测定解剖示出使用胚胎与基因组和形态比脊椎动物复杂较少了解信号转导途径和GRNS理事基本发育机制的功率的一例信令涉及其他细胞命运规范事件的途径( 缺口,刺猬,TGF-β和FGF信号)27,28,29,30,31。</s…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

We would like to thank Dr. Robert Angerer for his careful reading and editing of the manuscript. NIH R15HD088272-01 as well as the Office of Research and Development, and Department of Biological Sciences at Mississippi State University provided support for this project to RCR.

Materials

Translational-blocking morpholino and/or splice-blocking morpholino Gene Tools LLC Customized More information at www.gene-tools.com
Glycerol Invitrogen 15514-011
FITC (dextran fluorescein isothiocyanate) Invitrogen, Life Technologies D1821 Make 25mg/mL stock solution
Paraformaldehyde 16% solution EM Grade Electron Microscopy Sciences 15710
MOPS Sigma Aldrich M1254-250G
Tween-20 Sigma Aldrich 23336-0010
Formamide Sigma Aldrich 47671-1L-F
Yeast tRNA Invitrogen 15401-029
Normal Goat Serum Sigma Aldrich G9023-10mL
Alkaline Phosphatase-conjugated anti-digoxigenin antibody Roche 11 093 274 910
Tetramisole hydrochloride (levamisole) Sigma Aldrich L9756-5G
Tris Base UltraPure Research Products Internationall Corp 56-40-6
Sodium Chloride Fisher Scientific BP358-10
Magnesium chloride Sigma Aldrich 7786-30-3
BCIP (5-Bromo-4-Chloro-3-indolyl-phosphate Roche 11 383 221 001
4 Nitro blue tetrazolium chloride (NBT) Roche 11 383 213 001
Dimethyl Formamide Sigma Aldrich D4551-500mL
Potassium Chloride Sigma Aldrich P9541-5KG
Sodium Bicarbonate Sigma Aldrich S5761-500G
Magnesium Sulfate Sigma Aldrich M7506-2KG
Calcium Chloride Sigma Aldrich C1016-500G

Riferimenti

  1. Erwin, D. H., Davidson, E. H. The evolution of hierarchical gene regulatory networks. Nature reviews. Genetics. 10, 141-148 (2009).
  2. Peter, I. S., Davidson, E. H. Evolution of gene regulatory networks controlling body plan development. Cell. 144, 970-985 (2011).
  3. Borggrefe, T., et al. The Notch intracellular domain integrates signals from Wnt, Hedgehog, TGFbeta/BMP and hypoxia pathways. Biochimica et biophysica acta. 1863, 303-313 (2016).
  4. Range, R. C., Angerer, R. C., Angerer, L. M. Integration of canonical and noncanonical Wnt signaling pathways patterns the neuroectoderm along the anterior-posterior axis of sea urchin embryos. PLoS Biol. 11, e1001467 (2013).
  5. Cleary, M. A., van Osch, G. J., Brama, P. A., Hellingman, C. A., Narcisi, R. FGF, TGFbeta and Wnt crosstalk: embryonic to in vitro cartilage development from mesenchymal stem cells. Journal of tissue engineering and regenerative medicine. 9, 332-342 (2015).
  6. Lapraz, F., et al. RTK and TGF-beta signaling pathways genes in the sea urchin genome. Dev Biol. 300, 132-152 (2006).
  7. Pires-daSilva, A., Sommer, R. J. The evolution of signalling pathways in animal development. Nature reviews. Genetics. 4, 39-49 (2003).
  8. Sethi, A. J., Wikramanayake, R. M., Angerer, R. C., Range, R. C., Angerer, L. M. Sequential signaling crosstalk regulates endomesoderm segregation in sea urchin embryos. Science. 335, 590-593 (2012).
  9. Range, R. Specification and positioning of the anterior neuroectoderm in deuterostome embryos. Genesis. 52, 222-234 (2014).
  10. Petersen, C. P., Reddien, P. W. Wnt signaling and the polarity of the primary body axis. Cell. 139, 1056-1068 (2009).
  11. Lapraz, F., Haillot, E., Lepage, T. A deuterostome origin of the Spemann organiser suggested by Nodal and ADMPs functions in Echinoderms. Nature communications. 6, 8434 (2015).
  12. Kikuchi, A., Yamamoto, H., Sato, A. Selective activation mechanisms of Wnt signaling pathways. Trends in cell biology. 19, 119-129 (2009).
  13. Hogan, B. L. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev. 10, 1580-1594 (1996).
  14. Houart, C., et al. Establishment of the telencephalon during gastrulation by local antagonism of Wnt signaling. Neuron. 35, 255-265 (2002).
  15. Bertrand, S., Escriva, H. Evolutionary crossroads in developmental biology: amphioxus. Development. 138, 4819-4830 (2011).
  16. Rottinger, E., Lowe, C. J. Evolutionary crossroads in developmental biology: hemichordates. Development. 139, 2463-2475 (2012).
  17. Genome Sequencing Sea Urchin, C., et al. The genome of the sea urchin Strongylocentrotus purpuratus. Science. 314, 941-952 (2006).
  18. Ben-Tabou de-Leon, S., Su, Y. H., Lin, K. T., Li, E., Davidson, E. H. Gene regulatory control in the sea urchin aboral ectoderm: spatial initiation, signaling inputs, and cell fate lockdown. Dev Biol. 374, 245-254 (2013).
  19. Saudemont, A., et al. Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm. PLoS Genet. 6, e1001259 (2010).
  20. Cameron, R. A., Samanta, M., Yuan, A., He, D., Davidson, E. SpBase: the sea urchin genome database and web site. Nucleic Acids Res. 37, D750-D754 (2009).
  21. Stepicheva, N. A., Song, J. L. High throughput microinjections of sea urchin zygotes. Journal of visualized experiments : JoVE. , e50841 (2014).
  22. Cheers, M. S., Ettensohn, C. A. Rapid microinjection of fertilized eggs. Methods in cell biology. 74, 287-310 (2004).
  23. Arenas-Mena, C., Cameron, A. R., Davidson, E. H. Spatial expression of Hox cluster genes in the ontogeny of a sea urchin. Development. , 4631-4643 (2000).
  24. Sethi, A. J., Angerer, R. C., Angerer, L. M. Multicolor labeling in developmental gene regulatory network analysis. Methods in molecular biology. , 249-262 (2014).
  25. Wikramanayake, A. H., Huang, L., Klein, W. H. beta-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo. Proc Natl Acad Sci U S A. 95, 9343 (1998).
  26. Yaguchi, S., Yaguchi, J., Angerer, R. C., Angerer, L. M. A Wnt-FoxQ2-nodal pathway links primary and secondary axis specification in sea urchin embryos. Dev Cell. 14, 97-107 (2008).
  27. Molina, M. D., de Croze, N., Haillot, E., Lepage, T. Nodal: master and commander of the dorsal-ventral and left-right axes in the sea urchin embryo. Curr Opin Genet Dev. 23, 445-453 (2013).
  28. Range, R. C., Glenn, T. D., Miranda, E., McClay, D. R. LvNumb works synergistically with Notch signaling to specify non-skeletal mesoderm cells in the sea urchin embryo. Development. 135, 2445-2454 (2008).
  29. Range, R., et al. Cis-regulatory analysis of nodal and maternal control of dorsal-ventral axis formation by Univin, a TGF-beta related to Vg1. Development. 134, 3649-3664 (2007).
  30. Warner, J. F., Miranda, E. L., McClay, D. R. Contribution of hedgehog signaling to the establishment of left-right asymmetry in the sea urchin. Dev Biol. 411, 314-324 (2016).
  31. Rottinger, E., et al. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development. Development. 135, 353-365 (2008).
  32. Warner, J. F., McCarthy, A. M., Morris, R. L., McClay, D. R. Hedgehog signaling requires motile cilia in the sea urchin. Mol Biol Evol. 31, 18-22 (2014).
  33. Technau, U., Steele, R. E. Evolutionary crossroads in developmental biology. Cnidaria. Development. 138, 1447-1458 (2011).
  34. Yaguchi, J., Takeda, N., Inaba, K., Yaguchi, S. Cooperative Wnt-Nodal Signals Regulate the Patterning of Anterior Neuroectoderm. PLoS Genet. 12, e1006001 (2016).
  35. Duboc, V., Rottinger, E., Besnardeau, L., Lepage, T. Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo. Dev Cell. 6, 397-410 (2004).
  36. Bradham, C. A., et al. Chordin is required for neural but not axial development in sea urchin embryos. Dev Biol. 328, 221-233 (2009).
  37. Su, Y. H. Gene regulatory networks for ectoderm specification in sea urchin embryos. Biochimica et biophysica acta. 1789, 261-267 (2009).
  38. Lin, C. Y., Su, Y. H. Genome editing in sea urchin embryos by using a CRISPR/Cas9 system. Dev Biol. 409, 420-428 (2016).
check_url/it/55113?article_type=t

Play Video

Citazione di questo articolo
Range, R. C., Martinez-Bartolomé, M., Burr, S. D. The Power of Simplicity: Sea Urchin Embryos as in Vivo Developmental Models for Studying Complex Cell-to-cell Signaling Network Interactions. J. Vis. Exp. (120), e55113, doi:10.3791/55113 (2017).

View Video