Summary

方法可视化和用透射电子显微镜分析膜蛋白的相互作用

Published: March 05, 2017
doi:

Summary

Many proteins perform their function when attached to membrane surfaces. The binding of extrinsic proteins on nanodisc membranes can be indirectly imaged by transmission electron microscopy. We show that the characteristic stacking (rouleau) of nanodiscs induced by the negative stain sodium phosphotungstate is prevented by the binding of extrinsic protein.

Abstract

Monotopic proteins exert their function when attached to a membrane surface, and such interactions depend on the specific lipid composition and on the availability of enough area to perform the function. Nanodiscs are used to provide a membrane surface of controlled size and lipid content. In the absence of bound extrinsic proteins, sodium phosphotungstate-stained nanodiscs appear as stacks of coins when viewed from the side by transmission electron microscopy (TEM). This protocol is therefore designed to intentionally promote stacking; consequently, the prevention of stacking can be interpreted as the binding of the membrane-binding protein to the nanodisc. In a further step, the TEM images of the protein-nanodisc complexes can be processed with standard single-particle methods to yield low-resolution structures as a basis for higher resolution cryoEM work. Furthermore, the nanodiscs provide samples suitable for either TEM or non-denaturing gel electrophoresis. To illustrate the method, Ca2+-induced binding of 5-lipoxygenase on nanodiscs is presented.

Introduction

在医学研究中,许多注意力集中在膜蛋白,无论是内在的或外在的,参与多种脂质的相互作用。与脂相互作用的蛋白质的工作包括任一选择的替代给脂质,如清洁剂,amphipols 1,或小蛋白质2,或发现的膜替代,保持该蛋白的可溶性和活性。硫辛酸膜替代品包括脂质体和纳米圆盘(ND)3,4。

纳米圆盘是通过改造蛋白的一部分,载脂蛋白A-1,高密度脂蛋白(HDL)在血液天然存在的开发近天然膜的平台。载脂蛋白A-1是243残留长的短的两亲性α螺旋链,并有一个免费的脂溶性构象。 在体外 ,当在脂质的存在下,蛋白质的ApoA-1的两个副本自发重新排列以环绕HYDR脂质双层补丁5 ophobic酰基链部。的ApoA-1的工程化的版本通常被称为膜支架蛋白(MSP),以及越来越多的是可商购的质粒或纯化的蛋白质。在6较长或较短的7膜支架蛋白重复或α螺旋的缺失载脂蛋白A-1的结果。这又使得能够形成大约6毫微米光盘7至17纳米的直径8英寸有不同类型的用于纳米圆盘3,9的应用程序。最常用的应用是提供一种完整的膜蛋白8的稳定的近天然膜的环境,预先3,9审查。 A-探索较少使用是为研究提供一个纳米膜表面外周膜蛋白10,11,12,13,14,15,16,17。下面的协议的部分1可视化制备的磷脂和膜支架蛋白组成的纳米圆盘的过程。

样品制备是在大多数方法的瓶颈。具体方法-样品可以添加特定的信息,但它们也使结果的比较困难。因此,它是简单的,当样品是多峰,并且可以在多种不同的方法可直接使用。与使用的纳米圆盘的一个优点是纳米圆盘的相比,脂质体( 例如,样品可以直接用于两个TEM和非变性凝胶电泳,如在本协议)的小尺寸。

<p class ="“jove_content”">囊泡和脂质体早已被用于了解膜相互作用蛋白的功能。用于结构研究和可视化,一个跨膜蛋白的脂质体的结构确定的一个例子是可用的18。然而,嵌入脂质体膜中的monotopic膜蛋白没有高分辨率三维结构还没有公开发表,据我们所知。金纳米粒子或抗体可用于显现结合的蛋白质用TEM 19的脂质体或囊泡。尽管这些探针是非常具体的,它们可能是由光帷的膜结合位点或通过掩模的与柔性部件感兴趣的区域与膜结合蛋白干扰。金标记或抗体 – 复合的蛋白质也许可以在一个凝胶上分析,但是这将增加实验的成本。

虽然脂质体是一个很好的平台,我们不能肯定,流行ulation具有每脂质体蛋白质的特定的比率,可以通过使用纳米圆盘20的探索的特征。在脂质体,辅因子和底物可被截留在水溶性内部。这是膜水溶性物质将共享相同的命运两种膜的模拟物的。尽管如此,由于该双层区域是在纳米圆盘较小,需要物质的量较小以饱和纳米圆盘膜。

通过原子结构的测定蛋白质的认识功能的研究很多领域是必不可少。蛋白质结构测定方法包括X射线21;核磁共振(NMR)22,23;和透射电子显微镜(TEM)24在低温下,cryoEM。通过cryoEM分辨率近来有了很大的提高,主要是由于直接使用电子脱离的tectors 25,26。的大分子在近天然状态下拍摄的薄,玻璃体冰27。然而,由于生物分子的低对比度,它们变得很难在100的尺寸范围,以检测 – 200 kDa的。为适当大小的样品,数据收集可以制成并且可以应用于单粒子重建的方法,得到结构28。

然而,蛋白质结构的通过TEM测定是一个多步骤的过程。它通常与样品单分散性的使用负染色TEM 29phosphotungsten(PT)30或铀31重金属盐的评估开始。的负染大分子的低分辨率模型的重构通常制成,并且可以得到在分子结构29的重要信息。在平行下,使用cryoEM可以开始收集数据。应谨慎评估负染色TEM数据时,为了避免假象形成的误解作出。一个特定的人工制品是在PT污点上的磷脂的效果和脂质体32,从而导致长棒类似,从侧面33观察硬币堆叠的形成。这种“ROULEAU”或“堆栈”(以下简称记为“堆”)观察早期对HDL 34,后来还为纳米圆盘中35。

膜的堆叠和重塑可能有很多原因发生。例如,它可以通过共因素,如铜,通过TEM成像钼酸铵染色36所示来诱导。膜脂质的脂质体的部分含有一个亚氨基二乙酸头组用EDTA模仿金属络合,从而在加入铜离子后堆叠脂质体<s补课=“外部参照”> 36。堆叠也可能是由于在或在脂质双层通过的蛋白质的蛋白质-蛋白质相互作用(使用的染色未提及)37。观察到初期由PT磷脂的叠层形成;然而,后来的工作重点是拆除或取消此神器形成38。

在这里,我们建议采取NAPT诱导纳米圆盘堆叠的膜结合蛋白的透射电镜研究优势的方法。总之,蛋白的纳米圆盘结合会阻止纳米圆盘从堆叠。虽然为堆叠的原因尚不清楚,有人提议39存在的磷脂和PT的磷酰基之间的静电相互作用,使光盘粘到彼此( 图1A)。我们的协议背后的假设是,当一个蛋白结合至纳米圆盘,大部分磷脂表面的不availa竹叶提取用于与PT中的相互作用由于由蛋白质空间位阻。这将防止堆的形成( 图1B)。两个结论可以得出。首先,预防堆叠意味着感兴趣的蛋白质已结合到膜上。其次,蛋白质- ND复合体可以用标准的单粒子加工方法24,40被处理,以获得复合物的粗形态。此外,通过像非变性凝胶电泳或动态光散射方法的分析可以被执行。

为了证明这一假设,我们使用的膜结合蛋白5-脂氧合酶(5LO),其涉及许多炎性疾病41,42。这个78-kDa蛋白需要钙离子结合其膜43。虽然这种膜协会已被广泛研究使用脂质体S =“外部参照”> 44,45,46和膜部分47,这些不能被用于TEM分析和结构确定。

纳米圆盘的制备通过混合脂重新悬浮于胆洗涤剂钠MSP开始。在冰上孵育1小时后,该洗涤剂慢慢地从使用吸附剂树脂重构混合物中除去。这种材料常常由聚苯乙烯形成小珠。他们是相对疏水并有较脂类结合48洗涤剂有强烈的偏好。除去疏水珠和使用离心进行澄清后,将纳米圆盘通过尺寸排阻色谱(SEC)纯化。纯化的纳米圆盘与以等摩尔比率(或几个比率滴定)一个monotopic膜蛋白(和可能的辅因子)混合,并留于rEACT(15分钟)。通过TEM分析是通过将样品的微升-量到辉光放电,碳包被的网格,然后通过与NAPT进行负染色进行。从当等分试样施加到TEM格栅上相同的样品可通过非变性或SDS-PAGE凝胶电泳,以及由各种活动的测量可用于分析,没有大的变化。

Protocol

1.纳米圆盘的制备表达和膜支架蛋白8的纯化,35 表达在大肠杆菌 BL21的His-标记MSP1E3D1(DE3)中T1R pRARE2应变在烧瓶中。准备与在37℃下补充有50微克/毫升卡那霉素的LB培养基的50mL过夜起始培养。稀释过夜起始培养在2L补充50微克/毫升卡那霉素了不起的肉汤培养基。 生长的细胞在37℃,直至在600nm(OD 600)的光密度在18℃达…

Representative Results

我们提出的方法,取决于制备纳米圆盘提供monotopic膜蛋白结合膜表面。因为有嵌入到纳米圆盘脂质双层无跨膜蛋白,所述纳米圆盘在这里表示为“空纳米圆盘”( 图2A)。这些具有256 kDa的计算分子量两个MSP1E3D1骨架蛋白和大约260 POPC 8的分子的组合物。使用这种蛋白质:用于重建脂质比,一个主要的峰( 图2A)的凝胶过滤中洗脱?…

Discussion

该方法可以被分为三个部分:空纳米圆盘的重组,制备蛋白质 – 纳米圆盘复合物,以及用于这些配合物的TEM的阴性染色。每个部分将分别关于该技术,关键步骤,和有用的改进的局限性来解决。

空纳米圆盘重建。关键步骤和限制在生产和使用纳米圆盘。

为空的纳米圆盘的制备中,有必要优化MSP与脂质的比例。对于最常见的MSP和脂质(使用胆作为洗涤剂),…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

作者感谢瑞典研究理事会,斯德哥尔摩郡议会和KI资金的支持。在卡罗林斯卡研究所/ SciLifeLab蛋白质科学研究平台基金(http://PSF.ki.se)进行MSP的表达和纯化。作者也想感谢帕西Purhonen博士和马蒂尔达·舍贝里博士分享他们的技术专长,并为他们及时的援助。

Materials

Transmission electron microscope: JEOL2100F JEOL
CCD camera Tiez Video and Imaging Processing System GmbH, Germany
Glow discharger Baltec
TEM grid: 400 mesh TAAB GM016/C
Size exclusion chromatography: Agilent SEC-5 Agilent Technologies 5190-2526
Superdex 200 HR 10/300 GE Healthcare Life Sciences 17-5172-01
Plasmid:MSP1E3D1 Addgene 20066
Bacteria: BL21DE3 NEB C2527H
Bacteria: BL21 (DE3) T1R pRARE2 Protein Science Facility, KI, Solna
Purification Matrix: ATP agarose Sigma Aldrich A2767
Purification Matrix: HisTrap HP-5 ml GE Healthcare Life Sciences 17-5247-01
Lipid:POPC Avanti polar lipids 850457C 25 mg/ml in chloroform
Hydrophobic beads: Bio-Beads, SM-2 Resin Bio-Rad 1523920
13 mm syringe filter: 0.2 μm Pall life sciences PN 4554T
Stain: Sodium phosphotungstate tribasic hydrate Sigma Aldrich 31648
2-mercaptoethanol Sigma Aldrich M3148-250ML
Sodium Dodecyl Sulfate (SDS) Bio-Rad 161-0301
Protease inhibitor cocktail Sigma Aldrich 4693132001
TCEP Sigma Aldrich 646547
Detergent: Sodium cholate hydrate Sigma Aldrich C6445-10G
Sodium Cholate 500 mM Sodium cholate Resuspend in miliQ water and store at -20°C
Lipid Stock 50 mM POPC, 100 mM sodium cholate, 20 mM Tris-HCl pH 7.5, 100 mM NaCl Store at 4°C for a week or
Store -80°C for a month, after purging the solution with nitrogen
MSP standard buffer 20 mM Tris-HCl pH 7.5, 100 mM NaCl, 0.5 mMEDTA Store at 4°C
Non-Denaturaing Electrophoresis Anode Buffer 50 mM Bis Tris 50 mM Tricine, pH 6.8 BN2001 Purchased from Thermofisher Scientific
Non-Denaturaing Electrophoresis Cathode Buffer 50 mM Bis Tris 50 mM Tricine, pH 6.8 0.002% Coomassie G-250 BN2002 Purchased from Thermofisher Scientific
Non-Denaturaing Electrophoresis 4X Sample loading Buffer 50 mM BisTrispH 7.2, 6N HCl, 50 mM NaCl, 10% (w/v) glycerol, 0.001% Ponceau S BN2003 Purchased from Thermofisher Scientific
Denaturaing Electrophoresis Running Buffer 25 mM Tris-HCl pH 6.8, 200 mM Glycine, 0.1 % (w/v) SDS Inhouse receipe
Denaturaing Electrophoresis 5X Sample loading Buffer 0.05 % (w/v) Bromophenolblue, 0.2 M Tris-HCl pH 6.8, 20 % (v/v) glycerol, 10% (w/v) SDS,10 mM 2-mercaptoethanol Inhouse receipe
Terrific broth Tryptone – 12.0g
Yeast Extract – 24.0g
100 mL 0.17M KH2PO4 and 0.72M K2HPO4
Glycerol – 4 mL
Tryptone, yeast extract and glycerol were prepared to 900 ml and autoclaved seperately. KH2PO4 and K2HPO4 were prepared and autoclaved separately. Both were mixed before using the medium

Riferimenti

  1. Kleinschmidt, J. H., Popot, J. L. Folding and stability of integral membrane proteins in amphipols. Arch Biochem Biophys. 564, 327-343 (2014).
  2. Frauenfeld, J., et al. A saposin-lipoprotein nanoparticle system for membrane proteins. Nat Methods. 13 (4), 345-351 (2016).
  3. Denisov, I. G., Sligar, S. G. Nanodiscs for structural and functional studies of membrane proteins. Nat Struct Mol Biol. 23 (6), 481-486 (2016).
  4. Bayburt, T. H., Grinkova, Y. V., Sligar, S. G. Self-Assembly of Discoidal Phospholipid Bilayer Nanoparticles with Membrane Scaffold Proteins. Nano Letters. 2 (8), 853-856 (2002).
  5. Jonas, A., Steinmetz, A., Churgay, L. The number of amphipathic alpha-helical segments of apolipoproteins A-I, E, and A-IV determines the size and functional properties of their reconstituted lipoprotein particles. J Biol Chem. 268 (3), 1596-1602 (1993).
  6. Grinkova, Y. V., Denisov, I. G., Sligar, S. G. Engineering extended membrane scaffold proteins for self-assembly of soluble nanoscale lipid bilayers. Protein Eng Des Sel. 23 (11), 843-848 (2010).
  7. Hagn, F., Etzkorn, M., Raschle, T., Wagner, G. Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc. 135 (5), 1919-1925 (2013).
  8. Ritchie, T. K., Duzgunes, N. e. j. a. t., et al. . Methods in Enzymology. 464, 211-231 (2009).
  9. Schuler, M. A., Denisov, I. G., Sligar, S. G. Nanodiscs as a new tool to examine lipid-protein interactions. Methods Mol Biol. 974, 415-433 (2013).
  10. Nasr, M. L., et al. Membrane phospholipid bilayer as a determinant of monoacylglycerol lipase kinetic profile and conformational repertoire. Protein Sci. 22 (6), 774-787 (2013).
  11. Yokogawa, M., et al. NMR analyses of the interaction between the FYVE domain of early endosome antigen 1 (EEA1) and phosphoinositide embedded in a lipid bilayer. J Biol Chem. 287 (42), 34936-34945 (2012).
  12. Wan, C., et al. Insights into the molecular recognition of the granuphilin C2A domain with PI(4,5)P2. Chem Phys Lipids. 186, 61-67 (2015).
  13. Zhang, P., et al. An Isoform-Specific Myristylation Switch Targets Type II PKA Holoenzymes to Membranes. Structure. 23 (9), 1563-1572 (2015).
  14. Grushin, K., Miller, J., Dalm, D., Stoilova-McPhie, S. Factor VIII organisation on nanodiscs with different lipid composition. Thromb Haemost. 113 (4), 741-749 (2015).
  15. Baylon, J. L., Lenov, I. L., Sligar, S. G., Tajkhorshid, E. Characterizing the membrane-bound state of cytochrome P450 3A4: structure, depth of insertion, and orientation. J Am Chem Soc. 135 (23), 8542-8551 (2013).
  16. Mazhab-Jafari, M. T., et al. Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site. Proc Natl Acad Sci U S A. 112 (21), 6625-6630 (2015).
  17. Mazhab-Jafari, M. T., et al. Membrane-dependent modulation of the mTOR activator Rheb: NMR observations of a GTPase tethered to a lipid-bilayer nanodisc. J Am Chem Soc. 135 (9), 3367-3370 (2013).
  18. Wang, L., Sigworth, F. J. Structure of the BK potassium channel in a lipid membrane from electron cryomicroscopy. Nature. 461 (7261), 292-295 (2009).
  19. Ackerson, C. J., Powell, R. D., Hainfeld, J. F. Site-specific biomolecule labeling with gold clusters. Methods Enzymol. 481, 195-230 (2010).
  20. Boldog, T., Grimme, S., Li, M., Sligar, S. G., Hazelbauer, G. L. Nanodiscs separate chemoreceptor oligomeric states and reveal their signaling properties. Proc Natl Acad Sci U S A. 103 (31), 11509-11514 (2006).
  21. Moraes, I., Evans, G., Sanchez-Weatherby, J., Newstead, S., Stewart, P. D. Membrane protein structure determination – the next generation. Biochim Biophys Acta. 1838 (1 Pt A), 78-87 (2014).
  22. Dias, D. M., Ciulli, A. NMR approaches in structure-based lead discovery: recent developments and new frontiers for targeting multi-protein complexes. Prog Biophys Mol Biol. 116 (2-3), 101-112 (2014).
  23. Viegas, A., Viennet, T., Etzkorn, M. The power, pitfalls and potential of the nanodisc system for NMR-based studies. Biol Chem. , (2016).
  24. Cheng, Y., Grigorieff, N., Penczek, P. A., Walz, T. A primer to single-particle cryo-electron microscopy. Cell. 161 (3), 438-449 (2015).
  25. Wu, S., Armache, J. P., Cheng, Y. Single-particle cryo-EM data acquisition by using direct electron detection camera. Microscopy (Oxf). 65 (1), 35-41 (2016).
  26. Li, X., et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods. 10 (6), 584-590 (2013).
  27. De Carlo, S., Adrian, M., Kalin, P., Mayer, J. M., Dubochet, J. Unexpected property of trehalose as observed by cryo-electron microscopy. J Microsc. 196 (1), 40-45 (1999).
  28. Nogales, E. The development of cryo-EM into a mainstream structural biology technique. Nat Methods. 13 (1), 24-27 (2016).
  29. Ohi, M., Li, Y., Cheng, Y., Walz, T. Negative Staining and Image Classification Powerful Tools in Modern Electron Microscopy. Biol Proced Online. 6, 23-34 (2004).
  30. Forte, T. M., Nordhausen, R. W. Electron microscopy of negatively stained lipoproteins. Methods Enzymol. 128, 442-457 (1986).
  31. Zhao, F. Q., Craig, R. Capturing time-resolved changes in molecular structure by negative staining. J Struct Biol. 141 (1), 43-52 (2003).
  32. Zhang, L., et al. Morphology and structure of lipoproteins revealed by an optimized negative-staining protocol of electron microscopy. J Lipid Res. 52 (1), 175-184 (2011).
  33. Zhang, L., et al. An optimized negative-staining protocol of electron microscopy for apoE4 POPC lipoprotein. J Lipid Res. 51 (5), 1228-1236 (2010).
  34. Matz, C. E., Jonas, A. Micellar complexes of human apolipoprotein A-I with phosphatidylcholines and cholesterol prepared from cholate-lipid dispersions. J Biol Chem. 257 (8), 4535-4540 (1982).
  35. Kumar, R. B., et al. Structural and Functional Analysis of Calcium Ion Mediated Binding of 5-Lipoxygenase to Nanodiscs. PLoS One. 11 (3), e0152116 (2016).
  36. Waggoner, T. A., Last, J. A., Kotula, P. G., Sasaki, D. Y. Self-assembled columns of stacked lipid bilayers mediated by metal ion recognition. J Am Chem Soc. 123 (3), 496-497 (2001).
  37. Kovacs, E., et al. Analysis of the Role of the C-Terminal Tail in the Regulation of the Epidermal Growth Factor Receptor. Mol Cell Biol. 35 (17), 3083-3102 (2015).
  38. Rames, M., Yu, Y., Ren, G. Optimized Negative Staining: a High-throughput Protocol for Examining Small and Asymmetric Protein Structure by Electron Microscopy. J Vis Exp. (90), e51087 (2014).
  39. Zhang, L., Tong, H., Garewal, M., Ren, G. Optimized negative-staining electron microscopy for lipoprotein studies. Biochim Biophys Acta. 1830 (1), 2150-2159 (2013).
  40. Cong, Y., Ludtke, S. J. Single particle analysis at high resolution. Methods Enzymol. 482, 211-235 (2010).
  41. Radmark, O., Werz, O., Steinhilber, D., Samuelsson, B. 5-Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochim Biophys Acta. 1851 (4), 331-339 (2015).
  42. Anwar, Y., Sabir, J. S., Qureshi, M. I., Saini, K. S. 5-lipoxygenase: a promising drug target against inflammatory diseases-biochemical and pharmacological regulation. Curr Drug Targets. 15 (4), 410-422 (2014).
  43. Radmark, O., Samuelsson, B. Regulation of the activity of 5-lipoxygenase, a key enzyme in leukotriene biosynthesis. Biochem Biophys Res Commun. 396 (1), 105-110 (2010).
  44. Noguchi, M., Miyano, M., Matsumoto, T., Noma, M. Human 5-lipoxygenase associates with phosphatidylcholine liposomes and modulates LTA4 synthetase activity. Biochim Biophys Acta. 1215 (3), 300-306 (1994).
  45. Pande, A. H., Qin, S., Tatulian, S. A. Membrane fluidity is a key modulator of membrane binding, insertion, and activity of 5-lipoxygenase. Biophys J. 88 (6), 4084-4094 (2005).
  46. Pande, A. H., et al. Modulation of human 5-lipoxygenase activity by membrane lipids. Biochimica. 43 (46), 14653-14666 (2004).
  47. Wong, A., Hwang, S. M., Cook, M. N., Hogaboom, G. K., Crooke, S. T. Interactions of 5-lipoxygenase with membranes: studies on the association of soluble enzyme with membranes and alterations in enzyme activity. Biochimica. 27 (18), 6763-6769 (1988).
  48. Rigaud, J. L., Levy, D., Mosser, G., Lambert, O. Detergent removal by non-polar polystyrene beads. European Biophysics Journal. 27 (4), 305-319 (1998).
  49. Wittig, I., Braun, H. P., Schagger, H. Blue native PAGE. Nat Protoc. 1 (1), 418-428 (2006).
  50. Rames, M., Yu, Y., Ren, G. Optimized negative staining: a high-throughput protocol for examining small and asymmetric protein structure by electron microscopy. J Vis Exp. (90), e51087 (2014).
  51. Denisov, I. G., Grinkova, Y. V., Lazarides, A. A., Sligar, S. G. Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. J Am Chem Soc. 126 (11), 3477-3487 (2004).
  52. Hornschemeyer, P., Liss, V., Heermann, R., Jung, K., Hunke, S. Interaction Analysis of a Two-Component System Using Nanodiscs. PLoS One. 11 (2), 0149187 (2016).
  53. Degrip, W. J., Vanoostrum, J., Bovee-Geurts, P. H. Selective detergent-extraction from mixed detergent/lipid/protein micelles, using cyclodextrin inclusion compounds: a novel generic approach for the preparation of proteoliposomes. Biochem J. 330 (Pt 2), 667-674 (1998).
  54. Martin, D. D., Budamagunta, M. S., Ryan, R. O., Voss, J. C., Oda, M. N. Apolipoprotein A-I assumes a "looped belt" conformation on reconstituted high density lipoprotein. J Biol Chem. 281 (29), 20418-20426 (2006).
  55. Cerione, R. A., Ross, E. M. Reconstitution of receptors and G proteins in phospholipid vesicles. Methods Enzymol. 195, 329-342 (1991).
  56. Shaw, A. W., McLean, M. A., Sligar, S. G. Phospholipid phase transitions in homogeneous nanometer scale bilayer discs. FEBS Lett. 556 (1-3), 260-264 (2004).
  57. Meer, G., Voelker, D. R., Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 9 (2), 112-124 (2008).
  58. Civjan, N. R., Bayburt, T. H., Schuler, M. A., Sligar, S. G. Direct solubilization of heterologously expressed membrane proteins by incorporation into nanoscale lipid bilayers. Biotechniques. 35 (3), 553-562 (2003).
  59. Bao, H., Duong, F., Chan, C. S. A step-by-step method for the reconstitution of an ABC transporter into nanodisc lipid particles. J Vis Exp. (66), e3910 (2012).
  60. Brooks, S. P., Storey, K. B. Bound and determined: a computer program for making buffers of defined ion concentrations. Anal Biochem. 201 (1), 119-126 (1992).
  61. Gilbert, N. C., et al. The structure of human 5-lipoxygenase. Science. 331 (6014), 217-219 (2011).
  62. Radmark, O. 5-lipoxygenase-derived leukotrienes: mediators also of atherosclerotic inflammation. Arterioscler Thromb Vasc Biol. 23 (7), 1140-1142 (2003).
  63. Gao, Y., Cao, E., Julius, D., Cheng, Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature. 534 (7607), 347-351 (2016).
  64. Bayburt, T. H., Sligar, S. G. Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers. Protein Sci. 12 (11), 2476-2481 (2003).
check_url/it/55148?article_type=t

Play Video

Citazione di questo articolo
B. Kumar, R., Zhu, L., Hebert, H., Jegerschöld, C. Method to Visualize and Analyze Membrane Interacting Proteins by Transmission Electron Microscopy. J. Vis. Exp. (121), e55148, doi:10.3791/55148 (2017).

View Video