Summary

毛喉素诱导在肠组织体溶胀:一个<em>体外</em>检测方法的评估囊性纤维化患者对药物的反应

Published: February 11, 2017
doi:

Summary

This protocol describes an assay for measuring CFTR function and CFTR modulator responses in cultured tissue from subjects with cystic fibrosis (CF). Biopsy-derived intestinal organoids swell in a cAMP-driven fashion, a response that is defective (or strongly reduced) in CF organoids and can be restored by exposure to CFTR modulators.

Abstract

Recently-developed cystic fibrosis transmembrane conductance regulator (CFTR)-modulating drugs correct surface expression and/or function of the mutant CFTR channel in subjects with cystic fibrosis (CF). Identification of subjects that may benefit from these drugs is challenging because of the extensive heterogeneity of CFTR mutations, as well as other unknown factors that contribute to individual drug efficacy. Here, we describe a simple and relatively rapid assay for measuring individual CFTR function and response to CFTR modulators in vitro. Three dimensional (3D) epithelial organoids are grown from rectal biopsies in standard organoid medium. Once established, the organoids can be bio-banked for future analysis. For the assay, 30-80 organoids are seeded in 96-well plates in basement membrane matrix and are then exposed to drugs. One day later, the organoids are stained with calcein green, and forskolin-induced swelling is monitored by confocal live cell microscopy at 37 °C. Forskolin-induced swelling is fully CFTR-dependent and is sufficiently sensitive and precise to allow for discrimination between the drug responses of individuals with different and even identical CFTR mutations. In vitro swell responses correlate with the clinical response to therapy. This assay provides a cost-effective approach for the identification of drug-responsive individuals, independent of their CFTR mutations. It may also be instrumental in the development of future CFTR modulators.

Introduction

CF是通过在编码上皮阴离子通道的囊性纤维化跨膜传导调节蛋白(CFTR)基因的突变引起的。 CF影响全世界约1 85000人。超过2000 CFTR突变已经确定( www.genet.sickkids.on.ca )。这种多样性也部分解释观察到的疾病表型(的广泛www.CFTR2.org )2,3。六类CFTR突变是基于其对CFTR蛋白表达和功能作用定义的:(I)中没有的合成,(II)中受损的贩卖,(Ⅲ)有缺陷的通道门控,(IV)中改变的电导,(V)的降低的正常水平功能CFTR,和(VI)受损细胞表面稳定性4。虽然常见CFTR突变很好的研究,CFTR功能和临床状态的关系保持poorlŸ了解在个人的水平,特别是对于大集团的罕见的“孤儿”突变( www.CFTR2.org )1,3。

最近,药物已经开发了靶向特定突变的方式CFTR蛋白。两个班的CFTR蛋白,靶向药物,目前在临床上使用,并有行动不同的模式。增效剂,例如VX-770,增强顶部本地化突变体CFTR的开放概率和在他们除了细胞5直接作用。校正,如VX-809,恢复内质网本地化错误折叠的CFTR的贩运和要求预孵育的影响细胞前观察到6。该CFTR增强剂,VX-770,已注册的G551D突变的7,8学科,以及为其他八位CFTR突变门控,包括S1251N 9;一起,这些突变通过所有CF患者的5%进行。其它的临床试验已经表明VX-770,与校正的VX-809相结合,限制对肺功能尚未显著影响,并导致恶化率在受试者纯合的患者10 45-50%承载的F508del突变降低 11。

常规的临床试验,以CF患者的剩余的50%的范围内确定药物响应受试者是昂贵和费时的,并且不与非常罕见的CFTR基因型的个体是可行的。新颖,具有成本效益的,个性化的方法是,以匹配于携带任何类型的CFTR突变的个体数量的增加CFTR调节剂的关键。到现在为止,承载特定的CFTR突变的患者群体的审判列入遵循了使用H CFTR突变基因转染的研究eterologous细胞系统,随后电生理学研究中尤斯灌流室5,6,12。由于缺乏足够的CF动物模型中,在从CF肺外植体材料来源的空气-液体界面分化支气管上皮细胞的药物的功效研究已用于药物开发13,14,15。然而,肺组织外植体和侵入性操作的使用限制,以获得无疾病终末期患者支气管细胞阻碍不太常见CFTR突变的分析和预防药物测试的个性时尚。为了克服这些限制,“绿色通道”的组织,例如结肠组织体,鼻气道细胞,和从诱导的多能干细胞衍生的气道细胞,目前正在探索的个性化的药物治疗。

<p class="“jove_content”">以前,我们在三维组织体16,17的形式建立的协议,以培养上皮干细胞从任何胃肠器官。为人类结肠/直肠中,培养条件包括限定生长因子(表皮生长因子(EGF),胃泌素,的Wnt-3A,R脊椎蛋白3(Rspo3),和头蛋白)结合的小分子(烟酰胺,A83-01,和SB202190)在基底膜基质。在这些条件下,单个干细胞或小组织片段生长出到由高度偏振光上皮朝向外侧面向其基部侧形成封闭,囊状,三维结构。所有类型的细胞通常出现在他们正常的比例和位置。组织体可以在由每周机械破碎和再镀长时间周期进行扩展。它们是遗传和表型稳定,可以进行储存,从而允许长期扩增和生物银行17。他们是服从所有标准的细胞生物学/遗传操作和分析技术的二维细胞系18开发的。

我们最近证明CFTR功能可以在大肠癌组织体可容易地测得在毛喉素诱导肿胀(FIS)测定19,20。当暴露于毛喉素(FSK)或者,霍乱毒素,类器官迅速增加其环磷酸腺苷(cAMP)的水平,这在CFTR通道19的开口又导致。类器官来自健康个体,或从与剩余功能相关CFTR突变,受试者将随后溶胀离子和水输送到组织体腔,分泌性腹泻的体外等效的结果。大肠组织体的FIS响应以前证明是完全的CFTR相关的,通过从CFTR空个人取得组织体所指示的一个通过使用特定的药理CFTR抑制剂19次。大型主题特定数据集可以在几个星期内采取活检后得到。

在这里详细描述的FIS测定中,类器官是从可以在任何年龄和只有有限的不适21得到直肠活检中培养。类器官是由机械破碎每周传代成单隐窝,可以轻松地重新密封,并形成新的类器官。用于运行FIS测定中,〜这些扰乱小组织体30-80铺板在96孔板19的每个孔中。在测定的当天,将组织体染色用钙黄绿素绿色,它被保持活细胞内,便利实时成像的荧光细胞渗透性染料。然后,FSK,这引起了细胞内cAMP,从而激活CFTR,是为了刺激类器官肿胀加入。在心尖CFTR充当增效剂同时W¯¯添加第i个毛喉素,而认为CFTR恢复贩卖校正器加FSK之前所加的24小时。的器官样肿胀是由计算用于在福斯克林除了各时间点的所有荧光物体的总面积的相对增加的自动图像分析进行定量。

三维类器官溶胀提供了超过在2D培养的气道细胞现有电CFTR读数在尤斯灌流室的优点和缺点。一个主要优点是溶胀测定的吞吐量。细胞进行培养,并使用单一类型的培养基的测定,和一个有经验的技术人员可以培养多达25类器官样本每周,而在12患者样品定量每周约1,200个数据点。我们通常通过键入每板重复或三次测量单个实验条件,并在三个独立的孵化时间点重复这种测量。在总计约300-500小号英格尔类器官结构,则每个实验条件下,从而导致有限的技术可变性CFTR功能的非常精确的测量进行测定。这种精度使我们清楚地界定残留的功能和应对CFTR调节差异,并允许我们随手拿起携带相同的CFTR突变19,22,23,24,25例患者的遗传背景的影响。数据质量可以从显微镜图像容易地评估。而FIS是充分CFTR依赖性,它是CFTR功能的间接的测量结果,所造成的离子输送的流体传输的耦合其读出。与此相反,在尤斯灌流室直接CFTR功能测量,测量跨膜离子流26。尤斯灌流室心尖允许基底或C的选择刺激ompartments(其类器官测定不允许);由透基底膜,心尖CFTR依赖性阴离子分泌可以有选择地测量27。

Protocol

使用本文中描述人类组织的所有试验批准在乌德勒支大学医学中心的伦理委员会(UMCU; TcBio#14-008)。从病人威廉敏娜儿童医院(WKZ)-UMCU获得用于组织收集,生成,存储和使用的组织体的知情同意。 设备 耗材 工具 层流罩 15和50毫升锥形管?…

Representative Results

图1A显示嵌入BMM隐窝代表新鲜隔离。隐窝是从CF受试者的结肠活检。通常情况下,从每个地穴( – C 图1A)生成的类器官。由于CFTR的功能障碍,大部分结肠的CF类器官的不囊状,而是结构紧凑,有突起和buddings( 图2A – 2B)。然而,一些CF类器官培养物,尤其是具有高的残留功能,具有与囊性形状( 图2C)?…

Discussion

这里,我们提供了用于产生,膨胀,凝固,和人大肠组织体的解冻一完整的协议。虽然我们已经建立了人类器官样的文化前段时间17,它有时被证明很难建立在其他实验室的技术,而无需实际操作培训。我们预计,这些协议将取代这种培训。

的Wnt-3A条件培养基是为了在建立和维护长期化培养成功最关键的试剂之一。事实上,器官样的文化可能“撞车”暴露在…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作是由荷兰CF基金会(NCFS),ZonMW(40-00812-98-14103)时,威廉敏娜儿童医院研究基金和CZ和Zilverenkruis / Achmea的HIT-CF项目的支持。我们要感谢S.哈大 – 米歇尔,M. Geerdink,KM去冬德格鲁特和G Berkers(小儿呼吸科,威廉敏娜儿童医院,UMC乌得勒支系)和RHJ厚文(小儿消化内科,威廉敏娜的部儿童医院,UMC乌德勒支)对接近患者获得活检为CF生物资料库的产生。

Materials

Advanced Dulbecco’s Modified Eagles Medium with Nutrient Mixture F-12 Hams (Ad-DF) 500ml  Thermo Fisher Scientific:  Invitrogen #12634 stored at 4 °C
GlutaMax Thermo Fisher Scientific:  Invitrogen #35050 stored at 4 °C
Hepes Thermo Fisher Scientific:  Invitrogen # 15630-056 stored at 4 °C
Penicillin/Streptomycin Thermo Fisher Scientific:  Invitrogen #15140-122 stored at -20 °C
96 well culture plate Cellstar #655180
24 well culture plate Cellstar #662160
6 well culture plate Cellstar #657160
Dulbecco's Phosphate Buffered Saline (-) CaCl2 (-) MgCl2) (DPBS) Life Technologies: Gibco #14190-094 stored at 4 °C
Dulbecco’s Modified Eagles Medium  (DMEM) 500ml  Thermo Fisher Scientific:  Invitrogen #31966-021 For Wnt-3A Conditioned Medium Production. Stored at 4 °C
Fetal Bovine Serum (FBS) Bovogen #SFBS LOT#11113 For Wnt-3A Conditioned Medium Production. Stored at -20 °C
L Wnt3A cell line ATCC #CRL-2647 For Wnt-3A Conditioend Medium Production.
TOP/FOP plasmids Millipore  #17-285 For measuring Wnt activity
pTK-Renilla Promega  #E2241 For measuring Wnt activity
HEK-293 ATCC #CRL-1573 For measuring Wnt activity
Dual-Luciferase Reporter Assay System Promega  #E1910 For measuring Wnt activity
Zeocin  Thermo Fisher Scientific:  Invitrogen #R250-01 For Wnt-3A Cell line selection
B27 supplement  Thermo Fisher Scientific:  Invitrogen #17504-044 stored at -20 °C
N-Acetylcysteine Sigma Aldrich #A9165-5G stored at -20 °C
Nicotinamide Sigma Aldrich #N0636 stored at -20 °C
Human Epithelial Growth Factor (hEGF) PrepoTech #AF-100-15 stored at -20 °C
Gastrin Sigma Aldrich #G9145 stored at -20 °C
TGFb type I Receptor inhibitor (A83-01)  Tocris #2939 stored at -20 °C
Y-27632 dihydrochloride (RhoKi) Selleckchem #S1049 stored at -20 °C
p38 MAPK inhibitor (p38i) (SB202190) Sigma Aldrich #S7067 stored at -20 °C
Primocin InvivoGen #ant-pm-1 stored at -20 °C
Human Noggin (hNoggin) PrepoTech #120-10C stored at -20 °C
Human R-spondin 3 (hRspo-3) R&D Systems #3500-RS/CF stored at -20 °C
Vancomycin Sigma Aldrich #861987- 250mg stored at -20 °C
Gentamycin Life Technologies: Gibco #15710-049 stored at -20 °C
Ethylenediamine tetraacetic acid (EDTA) Sigma Aldrich #431788 Stored at 4 °C
Matrigel Corning #354230 stored at -80 °C
TryplE Express  Life Technologies: Gibco #12605-010 for trypsinizing organoids for freezing
Recovery Cell Culture Freezing Medium Life Technologies: Gibco #12648010 for freezing
Calcein Life Technologies: Gibco #C3100MP stored at -20 °C
Forskolin R&D Systems #1099-50 mg stored at -80 °C
Lumacaftor (VX-809) Selleckchem #s1565 stored at -80 °C
Ivacaftor (VX-770) Selleckchem #s1144 stored at -80 °C
Name of Reagents/Material Solvent Stock Concentration Final Concentration
GlutaMax 200 mM 2m M
Hepes 1 M 10 mM
Penicillin/Streptomycin 10K U/ml 10K µg/ml 100 U/ml 100 µg/ml
Zeocin  100 mg/ml  125 µg/ml
B27 supplement  100 x 1 x
N-Acetylcysteine MiliQ H20 500 mM
Nicotinamide DPBS 1 M 10 mM
Human Epithelial Growth Factor (hEGF) DPBS 0.1%BSA 0.5 mg/ml 50 ng/ml
Gastrin DPBS 100 µM 10 nM
TGFb type I Receptor inhibitor (A83-01)  DMSO 5 mM 500 nM
Y-27632 dihydrochloride (RhoKi) DMSO 10 mM 10 µM
p38 MAPK inhibitor (p38i) (SB202190) DMSO 30 mM 10 µM
Primocin 50 mg/ml  100 µg/ml
Human Noggin (hNoggin) DPBS 0.1%BSA 100 µg/ml 100 ng/ml
Human R-spondin 3 (hRspo-3) varies per lot 300 ng/ml
Vancomycin 10 mg/ml 50 µg/ml
Gentamycin 10 mg/ml 50 µg/ml
Ethylenediamine tetraacetic acid (EDTA) MiliQ H20 0.5 M 2 mM
Calcein DMSO 10 µg/ml 3.3 ng/ml
Forskolin DMSO 10 mM variable
Lumacaftor (VX-809) DMSO 20 mM variable
Ivacaftor (VX-770) DMSO 20 mM variable

Riferimenti

  1. De Boeck, K., Amaral, M. D. Progress in therapies for cystic fibrosis. Lancet Respir Med. 4 (8), 662-674 (2016).
  2. Cutting, G. R. Cystic fibrosis genetics: from molecular understanding to clinical application. Nature Rev Genet. 16 (1), 45-56 (2015).
  3. Sosnay, P. R., Siklosi, K. R., et al. Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene. Nature Genet. 45 (10), 1160-1167 (2013).
  4. Zielenski, J. Genotype and phenotype in cystic fibrosis. Respiration. 67 (2), 117-133 (2000).
  5. Van Goor, F., Hadida, S., et al. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci U.S.A. 106 (44), 18825-18830 (2009).
  6. Van Goor, F., Hadida, S., et al. Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci U.S.A. 108 (46), 18843-18848 (2011).
  7. Accurso, F. J., Rowe, S. M., et al. Effect of VX-770 in persons with cystic fibrosis and the G551D-CFTR mutation. N Engl J Med. 363 (21), 1991-2003 (2010).
  8. Ramsey, B. W., Davies, J., et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med. 365 (18), 1663-1672 (2011).
  9. De Boeck, K., Munck, A., et al. Efficacy and safety of ivacaftor in patients with cystic fibrosis and a non-G551D gating mutation. J Cyst Fibros. 13 (6), 674-680 (2014).
  10. Boyle, M. P., Bell, S. C., et al. A CFTR corrector (lumacaftor) and a CFTR potentiator (ivacaftor) for treatment of patients with cystic fibrosis who have a phe508del CFTR mutation: a phase 2 randomised controlled trial. Lancet Respir Med. 2 (7), 527-538 (2014).
  11. Wainwright, C. E., Elborn, J. S., et al. Lumacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del CFTR. N Engl J Med. 373 (3), 220-231 (2015).
  12. Van Goor, F., Yu, H., Burton, B., Hoffman, B. J. Effect of ivacaftor on CFTR forms with missense mutations associated with defects in protein processing or function. J Cyst Fibros. 13 (1), 29-36 (2014).
  13. Neuberger, T., Burton, B., Clark, H., Van Goor, F. Use of primary cultures of human bronchial epithelial cells isolated from cystic fibrosis patients for the pre-clinical testing of CFTR modulators. Methods Mol Biol. 741, 39-54 (2011).
  14. Randell, S. H., Fulcher, M. L., O’Neal, W., Olsen, J. C. Primary epithelial cell models for cystic fibrosis research. Methods Mol Biol. 742, 285-310 (2011).
  15. Karp, P. H., Moninger, T. O., et al. An in vitro model of differentiated human airway epithelia. Methods for establishing primary cultures. Methods Mol Biol. 188, 115-137 (2002).
  16. Sato, T., Vries, R. G., et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 459 (7244), 262-265 (2009).
  17. Sato, T., Stange, D. E., et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 141 (5), 1762-1772 (2011).
  18. Clevers, H. Modeling development and disease with Organoids. Cell. 165 (7), 1586-1597 (2016).
  19. Dekkers, J. F., Wiegerinck, C. L., et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nature Med. 19 (7), 939-945 (2013).
  20. Dekkers, J. F., van der Ent, C. K., Beekman, J. M. Novel opportunities for CFTR-targeting drug development using organoids. Rare Diseases. 1 (1), e27112 (2014).
  21. Servidoni, M. F., Sousa, M., et al. Rectal forceps biopsy procedure in cystic fibrosis: technical aspects and patients perspective for clinical trials feasibility. BMC gastroenterology. 13, 91 (2013).
  22. Ommen, D. D. Z. -. V., Vijftigschild, L. A. W., et al. Limited premature termination codon suppression by read-through agents in cystic fibrosis intestinal organoids. J Cyst Fibros. 15 (2), 158-162 (2016).
  23. Dekkers, J. F., Gogorza Gondra, R. A., et al. Optimal correction of distinct CFTR folding mutants in rectal cystic fibrosis organoids. Eur Respir J. , (2016).
  24. Dekkers, J. F., Van Mourik, P., et al. Potentiator synergy in rectal organoids carrying S1251N, G551D, or F508del CFTR mutations. J Cyst Fibros. , (2016).
  25. Dekkers, J. F., Berkers, G., et al. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci Transl Med. 8 (344), 344ra84 (2016).
  26. Li, H., Sheppard, D. N., Hug, M. J. Transepithelial electrical measurements with the Ussing chamber. J Cyst Fibros. 3, 123-126 (2004).
  27. Sheppard, D. N., Carson, M. R., Ostedgaard, L. S., Denning, G. M., Welsh, M. J. Expression of cystic fibrosis transmembrane conductance regulator in a model epithelium. Am J Physiol. 266 (4 Pt 1), L405-L413 (1994).
  28. Farin, H. F., van Es, J. H., Clevers, H. Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells. Gastroenterology. 143 (6), 1518-1529 (2012).
  29. Drost, J., et al. Organoid culture systems for prostate epithelial and cancer tissue. Nat Protoc. 11 (2), 347-358 (2016).
  30. Vijftigschild, L. A. W., Berkers, G., et al. β2-adrenergic receptor agonists activate CFTR in organoids and subjects with cystic fibrosis. Eur Respir J. 48 (3), 768-779 (2016).
  31. Dekkers, R., et al. A bioassay using intestinal organoids to measure CFTR in human plasma. J Cyst Fibros. 14 (2), 178-181 (2015).
  32. Graeber, S. Y., et al. Intestinal Current Measurements Detect Activation of Mutant CFTR in Patients with Cystic Fibrosis with the G551D Mutation Treated with Ivacaftor. Am J Respir Crit Care Med. 192 (10), 1252-1255 (2015).
  33. Van Goor, F., et al. Ivacaftor potentiation of multiple CFTR channels with gating mutations. Journal of Cystic Fibrosis: Official Journal of the Eur Cyst Fibrosis. 11 (3), 237-245 (2012).
check_url/it/55159?article_type=t

Play Video

Citazione di questo articolo
Boj, S. F., Vonk, A. M., Statia, M., Su, J., Dekkers, J. F., Vries, R. R. G., Beekman, J. M., Clevers, H. Forskolin-induced Swelling in Intestinal Organoids: An In Vitro Assay for Assessing Drug Response in Cystic Fibrosis Patients. J. Vis. Exp. (120), e55159, doi:10.3791/55159 (2017).

View Video