Summary

疏水货物封装有针对性的质膜交付在液晶纳米颗粒载体

Published: February 08, 2017
doi:

Summary

一种液晶纳米颗粒(LCNP)纳米载体被利用作为用于受控递送疏水货物的活细胞的质膜的车辆。

Abstract

药物/成像剂对细胞的受控递送是治疗学的发展和对细胞信号过程的研究是至关重要的。最近,纳米粒子(NPS)都表现出这样的运载系统的发展显著的承诺。这里,液晶的NP(LCNP)系递送系统已被用于不溶于水的染料,3,3'- dioctadecyloxacarbocyanine高氯酸(DIO)的受控递送,从NP芯内的等离子体的疏水区双层膜。在纳米颗粒的合成中,将染料有效地掺入疏水LCNP芯,如确认由多个光谱分析。 PEG化的胆固醇衍生物的NP表面(DIO-LCNP-PEG-澈)的缀合使染料加载纳米粒的结合在HEK 293T / 17细胞质膜。时间分辨激光扫描共聚焦显微镜和荧光共振能量转移(FRET)成像证实通从LCNP芯和其插入质膜双层香港专业教育学院DIO的流出。最后,迪欧作为LCNP-PEG-澈交付衰减DIO的细胞毒作用;相比DIO 批量交付解决方案DIO的NP形式展出少〜30%-40%的毒性。这种做法表明了LCNP平台的效用的有效模式疏水分子货物的具体膜交付和调制。

Introduction

由于与活细胞的接口的纳米材料(材料≤100纳米的至少一个维度)的出现,持续目标是采取纳米颗粒(纳米颗粒),用于各种应用的独特大小依赖特性的优势。这些应用包括细胞和组织的标记/成像( 在体外在体内 ),实时检测和的药物和其它货物1的受控递送。这种相关的NP性质的实例包括半导体纳米晶体的尺寸依赖性发射(量子点,量子点);金纳米颗粒的光热特性;脂质体的水性核心的大负荷能力;和碳同素异形体,例如单壁碳纳米管和石墨烯的弹道导电性。

最近,显著的兴趣已经出现在药品和其他货物,如对比度/成像的控制调制使用核动力源男厕所。在这里,基本原理是显著提高/通过提供它作为一个NP制剂优化整体溶解度,递送剂量,循环时间,并最终清除药物的货物。这已经到了被称为NP介导的药物递送(NMDD),并有目前有7种FDA批准的药物NP制剂在临床上用于治疗各种癌症和数百个临床试验的各个阶段。在本质上,目标是“实现事半功倍;”也就是说,要使用NP作为支架通过取较大的表面积的优点用较少的给药施用以提供更多的药物:体积( ,硬颗粒,如量子点和金属氧化物)纳米粒子的或它们的大的内部容积为装载大货的有效载荷( 例如 ,脂质体或胶束)。这里的目的是为了减少多全身递送给药方案的必要性,而在同一时间促进水溶液稳定性和增强的循环,特别是用于有挑战性疏水药物货物,虽然高效,是在水性介质中微溶。

因此,本文所描述的工作的目的是确定使用一种新的NP支架,用于向亲脂质膜双层的具体和受控递送疏水货物的生存能力。对工作的动机是固有的有限的溶解度和难于从含水介质递送疏水性分子的细胞。典型地,这样的疏水性分子的递送需要使用的有机溶剂( 例如 ,DMSO)或两亲性表面活性剂( 例如 ,泊洛沙姆),这可能是有毒的和妥协的细胞和组织的生存力2,或胶束载体,其可以具有有限的内部负载能力。这里所选择的NP载体是一种新型液晶的NP(LCNP)先前开发3制剂和先前已示出,实现了〜40倍改进,在抗癌药物阿霉素的培养细胞4的功效。

在本文所述的工作中,所选择的代表性的货物是电位膜染料,3,3'- dioctadecyloxacarbocyanine高氯酸(DIO)。 DIO是已经用于生活和固定神经细胞,膜电位测量顺行和逆行追踪不溶于水的染料,和一般的膜标记5,6,7,8,9。由于其疏水特性,DIO通常直接加入到细胞单层或组织中的结晶形式10,或它在非常高的浓度下培养 (〜1-20μM)从浓度原液11,12稀释后。

内容“>这里,方法是利用以LCNP平台,一个多功能的NP,其内芯是完全疏水性的,其表面是同时的亲水性和适合于生物耦合,作为递送载体用于DIO。DIO掺入合成期间LCNP芯和对NP表面,然后用聚乙二醇化的胆固醇部分官能化,以促进膜的DIO-LCNP合奏的质膜的结合。这种方法产生了一个输送系统,该系统划分的DIO到质膜以更大的保真度和膜滞留时间比DIO的游离形式从本体溶液递送(DIO 免费 )。另外,该方法表明,DIO的LCNP介导的递送基本调制并驱动染料的特定分区的速率进入亲脂质膜双层。这是实现同时伴随减少游离药物的细胞毒作用〜40%,通过提供它作为一个LCNP配方。

<p cl屁股="“jove_content”">预计本文所描述的方法将是研究人员其工作涉及或要求是难溶或在水溶液中完全不溶高度疏水货物的蜂窝递送强大有利的技术。

Protocol

1. DIO-LCNP和DIO-LCNP-PEG-澈的制备溶解液晶二丙烯酸酯交联剂(DACTP11,45毫克),3,3'- dioctadecyloxacarbocyanine高氯酸(DIO,2毫克),和自由基引发剂(偶氮二异丁腈,1毫克)聚合于2ml氯仿中。此添加到丙烯酸酯官能化的表面活性剂(AC10COONa,13毫克7毫升)的水溶液。 搅拌1小时,并在80%振幅的混合物超声处理5分钟以产生由通过聚合表面活性剂在水包围的有机材料的小滴的细乳液。 </l…

Representative Results

制备LCNPs其中对NP的疏水核心中装入一个代表膜标记探针来演示LCNP的效用作为有效递送载体为疏水货物。为此目的,选择的货物是高度不溶于水的电位膜标记染料,DIO。 DIO-装载LCNPs(DIO-LCNPs)用与化学成分DACTP11,AC10COONa,和DIO两相微乳液技术合成, 如图 1 18。在这个NP系统中,结晶交联剂DACTP11的共价连接的聚合物网络提供其中DIO驻留的交联网络中的间?…

Discussion

NMDD的一个持续目标是控制目标和药物制剂的细胞和组织的递送,并同时提高药物疗效相结合。对于此已经构成了显著挑战的一种特定类的药物分子是有节制地在水介质中不溶于疏水性药物/显像剂。这个问题一直困扰的强效药物的转变,从体外细胞培养系统,临床上并导致了一些有前途的药物分子被“搁置”,或遗弃,而不是在临床上进一步推行。渥曼青霉素(Wtmn),例如是磷脂酰肌醇3&#…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作是由夺标基地的经费计划(工作单位MA041-06-41-4943)的支持。 ON由国家研究理事会博士后研究会士的支持。

Materials

1-ethyl-3-(3-(dimethylamino)-propyl)carbodiimide hydrochloride (EDCA) ThermoFisher E2247
3,3′-dioctadecyloxacarbocyanine perchlorate (DiO) Sigma Aldrich D4292-20MG Hazardous/ make stock solution in DMSO
Cholesterol poly(ethylene glycol) amine hydrochloride Nanocs, Inc. PG2-AMCS-2k
Countess automated cell counter ThermoFisher C10227
Dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI) Sigma Aldrich 468495-100MG Hazardous/ make stock solution in DMSO
Dulbecco's Modified Eagle's Medium (DMEM) ThermoFisher 21063045 Warm in 37°C before use
Dulbecco's Phosphate Buffered Saline (DPBS) ThermoFisher 14040182 Warm in 37°C before use
Dynamic light scattering instrument ZetaSizer NanoSeries (Malvern Instruments Ltd., Worcestershire, UK)
Fibronectin Bovine Protein, Plasma ThermoFisher 33010018 Make stock solution 1mg/mL using DPBS. Use 20-30 µg/mL for coating MetTek dish, 2 h@ 37°C
Formaldehyde (16%, W/V) ThermoFisher 28906 Hazardous, dilute to 4% using DPBS
Human embryonic kidney cells (HEK 293T/17) American Type Culture Collection ATCC® CRL-11268™
Live cell imaging solution (LCIS) ThermoFisher A14291DJ Warm in 37°C before use
MatTek 14 mm # 1.0 coverglass insert cell culture dish MatTek corporation P35G-1.0-14-C
Modified Eagle Medium (DMEM) containing 25 mM HEPES ThermoFisher 21063045 Warm in 37°C before use
N-hydroxysulfosuccinimide sodium salt (NHSS) ThermoFisher 24510
Nikon A1si spectral confocal microscope Nikon Instruments
Trypan Blue Stain (0.4%)  ThermoFisher T10282 mix as a 50% to the cell suspension before counting the cells
Zeta potential instrument ZetaSizer NanoSeries (Malvern Instruments Ltd., Worcestershire, UK)
Ultrasonic Processor Sonics and Materials Inc GEX 600-5
Mini Cetntrifuge Benchmark Mini-fuge-04477
PD-10 Sephadex™ G-25 Medium GE Healthcare 17-0851-01
Bio-Rad ChemiDoc XRS Imaging System Bio-RAD 76S/07434
Trypsin-EDTA(0.25%), phenol red ThermoFisher 25200056

Riferimenti

  1. Nag, O. K., Field, L. D., Chen, Y., Sangtani, A., Breger, J. C., Delehanty, J. B. Controlled actuation of therapeutic nanoparticles: an update on recent progress. Ther. Deliv. 7 (5), 335-352 (2016).
  2. Galvao, J., Davis, B., Tilley, M., Normando, E., Duchen, M. R., Cordeiro, M. F. Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J. 28 (3), 1317-1330 (2014).
  3. Spillmann, C. M., Naciri, J., Anderson, G. P., Chen, M. S., Ratna, B. R. Spectral tuning of organic nanocolloids by controlled molecular interactions. ACS Nano. 3 (10), 3214-3220 (2009).
  4. Spillmann, C. M., Naciri, J., Algar, W. R., Medintz, I. L., Delehanty, J. B. Multifunctional Liquid Crystal Nanoparticles for Intracellular Fluorescent Imaging and Drug Delivery. ACS Nano. 8 (7), 6986-6997 (2014).
  5. Timmers, M., Vermijlen, D., Vekemans, K., De Zanger, R., Wisse, E., Braet, F. Tracing DiO-labelled tumour cells in liver sections by confocal laser scanning microscopy. J. Microsc. 208 (Pt 1), 65-74 (2002).
  6. Mufson, E. J., Brady, D. R., Kordower, J. H. Tracing neuronal connections in postmortem human hippocampal complex with the carbocyanine dye DiI. Neurobiol Aging. 11 (6), 649-653 (1990).
  7. Köbbert, C., Apps, R., Bechmann, I., Lanciego, J. L., Mey, J., Thanos, S. Current concepts in neuroanatomical tracing. Prog. Neurobiol. 62 (4), 327-351 (2000).
  8. Honig, M. G., Hume, R. I. Dil and DiO: versatile fluorescent dyes for neuronal labelling and pathway tracing. Trends Neurosci. 12 (9), 333-341 (1989).
  9. Gan, W. B., Bishop, D. L., Turney, S. G., Lichtman, J. W. Vital imaging and ultrastructural analysis of individual axon terminals labeled by iontophoretic application of lipophilic dye. J. Neurosci. Methods. 93 (1), 13-20 (1999).
  10. Godement, P., Vanselow, J., Thanos, S., Bonhoeffer, F. A study in developing visual systems with a new method of staining neurones and their processes in fixed tissue. Development. 101 (4), 697-713 (1987).
  11. Ragnarson, B., Bengtsson, L., Haegerstrand, A. Labeling with fluorescent carbocyanine dyes of cultured endothelial and smooth muscle cells by growth in dye-containing medium. Histochemistry. 97 (4), 329-333 (1992).
  12. Korkotian, E., Schwarz, A., Pelled, D., Schwarzmann, G., Segal, M., Futerman, A. H. Elevation of intracellular glucosylceramide levels results in an increase in endoplasmic reticulum density and in functional calcium stores in cultured neurons. J. Biol. Chem. 274 (31), 21673-21678 (1999).
  13. Garrett, R. H., Grisham, C. M. . Biochimica. , (2013).
  14. Berne, B. J., Pecora, R. . Dynamic Light Scattering. , 41155-41159 (2000).
  15. Kremers, G. J., Piston, D. W., Davidson, M. W. . Basics of FRET Microscopy. , (2016).
  16. Chen, H., Kim, S., Li, L., Wang, S., Park, K., Cheng, J. X. Release of hydrophobic molecules from polymer micelles into cell membranes revealed by Förster resonance energy transfer imaging. Proc. Natl. Acad. Sci. U.S.A. 105, 6596-6601 (2008).
  17. Campling, B. G., Pym, J., Galbraith, P. R., Cole, S. P. C. Use of the MTT assay for rapid determination of chemosensitivity of human leukemic blast cells. Leukemia Res. 12, 823-831 (1988).
  18. Nag, O. K., Naciri, J., Oh, E., Spillmann, C. M., Delehanty, J. B. Lipid raft-mediated membrane tethering and delivery of hydrophobic cargos from liquid crystal-based nanocarriers. Bioconjug. Chem. 27 (4), 982-993 (2016).
  19. Karve, S., et al. Revival of the abandoned therapeutic wortmannin by nanoparticle drug delivery. Proc. Natl. Acad. Sci. U. S. A. 109 (21), 8230-8235 (2012).
check_url/it/55181?article_type=t

Play Video

Citazione di questo articolo
Nag, O. K., Naciri, J., Oh, E., Spillmann, C. M., Delehanty, J. B. Targeted Plasma Membrane Delivery of a Hydrophobic Cargo Encapsulated in a Liquid Crystal Nanoparticle Carrier. J. Vis. Exp. (120), e55181, doi:10.3791/55181 (2017).

View Video