Summary

Bestemmelse glucosemetabolisme Kinetics Brug<sup> 18</sup> F-FDG Micro-PET / CT

Published: May 02, 2017
doi:

Summary

This study describes a protocol that uses 18F-FDG and positron emission tomography/computed tomography (PET/CT) imaging, together with kinetic modelling, to quantify the in vivo, real-time uptake of 18F-FDG into tissues.

Abstract

This paper describes the use of 18F-FDG and micro-PET/CT imaging to determine in vivo glucose metabolism kinetics in mice (and is transferable to rats). Impaired uptake and metabolism of glucose in multiple organ systems due to insulin resistance is a hallmark of type 2 diabetes. The ability of this technique to extract an image-derived input function from the vena cava using an iterative deconvolution method eliminates the requirement of the collection of arterial blood samples. Fitting of tissue and vena cava time activity curves to a two-tissue, three compartment model permits the estimation of kinetic micro-parameters related to the 18F-FDG uptake from the plasma to the intracellular space, the rate of transport from intracellular space to plasma and the rate of 18F-FDG phosphorylation. This methodology allows for multiple measures of glucose uptake and metabolism kinetics in the context of longitudinal studies and also provides insights into the efficacy of therapeutic interventions.

Introduction

Formålet med denne undersøgelse var at udvikle en positronemissionstomografi / computertomografi (PET / CT) metode til at kvantificere in vivo, realtid optagelse af glucose fra blodet ind i specifikke væv i mus. Dette blev opnået ved anvendelse af 18F-mærket fluordeoxyglucose (FDG) til at måle glucoseoptagelse og kinetisk modellering for at estimere satserne for 18F-FDG-optagelse fra plasmaet til det intracellulære rum, transporthastigheden fra intracellulære rum til plasma og hastigheden af 18F-FDG phosphorylering.

Hos gnavere er 18F-FDG blevet anvendt i præ-kliniske vurdering af talrige kræftbehandling 1, undersøgelser på tumorudvikling 2 og tumor metabolisme 3 samt billeddannelse af brune fedtdepoter 4, neuroinflamation 5 og hjerne stofskifte 6 </sup>.

Traditionelle metoder til at undersøge den vævsspecifikke optagelse af glucose i mus (og rotter) involverer generelt behandling med 2-deoxyglucose radioaktivt mærket med enten 3H eller 14C efterfulgt af eutanasi, væv indsamling og måling af radioaktivitet i hvert væv 7. Anvendelsen af ​​PET / CT muliggør ikke-invasiv bestemmelse af glucoseoptagelse og metabolisme i flere organer og regioner samtidigt i levende dyr. Derudover, som eutanasi er ikke et krav, denne teknik er egnet til anvendelse i longitudinelle undersøgelser.

Type 2-diabetes mellitus (T2DM) er kendetegnet ved forstyrret glucosemetabolisme og hyperglykæmi sekundær til reduceret væv respons på insulin (insulinresistens) og den manglende evne af pancreas-celler til at producere tilstrækkelige mængder insulin 8. Kinetisk analyse af glukoseoptagelse og stofskifte kan give vigtig indsigt ivirkningsmekanismen og effekten af ​​terapeutiske interventioner samt give mulighed for avanceret overvågning af sygdomsprogression.

Protocol

Alle procedurer, der er beskrevet i denne undersøgelse blev godkendt af Sydney Local Health District og University of Sydney Animal etiske komitéer og fulgte NIH Guide til pleje og anvendelse af forsøgsdyr, ottende udgave (2011). 1. Dyrepræparation BEMÆRK: I denne protokol mandlige db / db-mus (BKS.Cg- Dock7 m + / + Lepr db / J) blev holdt i flokopstaldning med ad libitum adgang til foder og vand indtil…

Representative Results

Vi har tidligere anvendt db / db-mus model til at undersøge virkningen af stigende plasma apo A-I-niveauer på kinetikken af glucoseoptagelse og metabolisme 13. I denne undersøgelse anvendte vi db / db-mus blev behandlet med insulin til at demonstrere anvendeligheden af PET / CT billeddannelse til at overvåge optagelse af 18F-FDG fra plasmaet i musculus gastrocnemius i realtid. Seks uger g…

Discussion

Protokollen beskrevet her repræsenterer en robust, ikke-invasiv metode til at bestemme kinetikken af ​​glucoseoptagelse fra blodstrømmen i væv og efterfølgende metabolisme i mus.

Db / db-mus er en er en veletableret dyremodel for type 2-diabetes 14, der er blevet anvendt i vid udstrækning til at undersøge insulinresistens og relevante indsatser. Imidlertid har tidligere undersøgelser kun kvantificeret endpoint optagelse i hjertet 15

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This work was supported by a National Imaging Facility Subsidised Access Grant to BJC, a National Health and Medical Research Council of Australia program grant (482800) to KAR and PJB. The authors would like to thank Andrew Arthur, Hasar Hazme and Marie-Claude Gregoire for support in developing this method.

Materials

PET/CT Scanner Siemens Inveon 
18F-FDG PETNET Solutions
Isoflurane Pharmachem
30 guage needle BD 305106
PMOD modelling software PMOD Technologies
BKS.Cg-Dock7m +/+ Leprdb/J  mice Jackson Laboratory 000642
Human insulin Sigma-Aldrich

Riferimenti

  1. Jensen, M. M., Kjaer, A. Monitoring of anti-cancer treatment with (18)F-FDG and (18)F-FLT PET: a comprehensive review of pre-clinical studies. Am J Nucl Med Mol Imaging. 5, 431-456 (2015).
  2. Duncan, K., et al. (18)F-FDG-PET/CT imaging in an IL-6- and MYC-driven mouse model of human multiple myeloma affords objective evaluation of plasma cell tumor progression and therapeutic response to the proteasome inhibitor ixazomib. Blood Cancer J. 3, e165 (2013).
  3. Wang, Y., Kung, A. L. 18F-FDG-PET/CT imaging of drug-induced metabolic changes in genetically engineered mouse lung cancer models. Cold Spring Harb Protoc. 2015, 176-179 (2015).
  4. Wang, X., Minze, L. J., Shi, Z. Z. Functional imaging of brown fat in mice with 18F-FDG micro-PET/CT. Journal of visualized experiments : JoVE. , (2012).
  5. Radu, C. G., Shu, C. J., Shelly, S. M., Phelps, M. E., Witte, O. N. Positron emission tomography with computed tomography imaging of neuroinflammation in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 104, 1937-1942 (2007).
  6. Toba, S., et al. Post-natal treatment by a blood-brain-barrier permeable calpain inhibitor, SNJ1945 rescued defective function in lissencephaly. Sci Rep. 3, 1224 (2013).
  7. Halseth, A. E., Bracy, D. P., Wasserman, D. H. Overexpression of hexokinase II increases insulinand exercise-stimulated muscle glucose uptake in vivo. Am J Physiol. 276, E70-E77 (1999).
  8. Defronzo, R. A. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 58, 773-795 (2009).
  9. Tohka, J., Reilhac, A. Deconvolution-based partial volume correction in Raclopride-PET and Monte Carlo comparison to MR-based method. NeuroImage. 39, 1570-1584 (2008).
  10. Wu, H. M., et al. et al. In vivo quantitation of glucose metabolism in mice using small-animal PET and a microfluidic device. J Nucl Med. 48, 837-845 (2007).
  11. Iida, H., et al. Error analysis of a quantitative cerebral blood flow measurement using H2(15)O autoradiography and positron emission tomography, with respect to the dispersion of the input function. J Cereb Blood Flow Metab. 6, 536-545 (1986).
  12. Cochran, B. J., et al. In vivo PET imaging with [18F]FDG to explain improved glucose uptake in an apolipoprotein A-I treated mouse model of diabetes. Diabetologia. 59, 1977-1984 (2016).
  13. Kobayashi, K., et al. The db/db mouse, a model for diabetic dyslipidemia: molecular characterization and effects of Western diet feeding. Metabolism. 49, 22-31 (2000).
  14. Yue, P., et al. Magnetic resonance imaging of progressive cardiomyopathic changes in the db/db mouse. Am J Physiol Heart Circ Physiol. 292, H2106-H2118 (2007).
  15. Hagberg, C. E., et al. Targeting VEGF-B as a novel treatment for insulin resistance and type 2 diabetes. Nature. 490, 426-430 (2012).
  16. Alf, M. F., et al. Quantification of brain glucose metabolism by 18F-FDG PET with real-time arterial and image-derived input function in mice. J Nucl Med. 54, 132-138 (2013).
  17. Tantawy, M. N., Peterson, T. E. Simplified [18F]FDG image-derived input function using the left ventricle, liver, and one venous blood sample. Molecular imaging. 9, 76-86 (2010).
  18. Thorn, S. L., et al. Repeatable noninvasive measurement of mouse myocardial glucose uptake with 18F-FDG: evaluation of tracer kinetics in a type 1 diabetes model. J Nucl Med. 54, 1637-1644 (2013).
  19. Wagner, R., Zimmer, G., Lacko, L. An interspecies approach to the investigation of the red cell membrane glucose transporter. Biochim Biophys Acta. 771, 99-102 (1984).
  20. Flores, J. E., McFarland, L. M., Vanderbilt, A., Ogasawara, A. K., Williams, S. P. The effects of anesthetic agent and carrier gas on blood glucose and tissue uptake in mice undergoing dynamic FDG-PET imaging: sevoflurane and isoflurane compared in air and in oxygen. Mol Imaging Biol. 10, 192-200 (2008).
check_url/it/55184?article_type=t

Play Video

Citazione di questo articolo
Cochran, B. J., Ryder, W. J., Parmar, A., Klaeser, K., Reilhac, A., Angelis, G. I., Meikle, S. R., Barter, P. J., Rye, K. Determining Glucose Metabolism Kinetics Using 18F-FDG Micro-PET/CT. J. Vis. Exp. (123), e55184, doi:10.3791/55184 (2017).

View Video