Summary

Het evalueren van het effect van Environmental Chemicals over Honey Bee ontwikkeling van het individu naar Colony Level

Published: April 01, 2017
doi:

Summary

Herein we present a method to feed pesticide contaminated food to both an individual honey bee and a beehive colony. The procedure evaluates the pesticide effect on individual honey bees by in vivo feeding of basic larval diet and also on the natural condition of beehive colony.

Abstract

The presence of pesticides in the beekeeping environment is one of the most serious problems that impacts the life of a honey bee. Pesticides can be brought back to the beehive after the bees have foraged on flowers that have been sprayed with pesticides. Pesticide contaminated food can be exchanged between workers which then feed larvae and therefore can potentially affect the development of honey bees. Thus, residual pesticides in the environment can become a chronic damaging factor to honey bee populations and gradually lead to colony collapse. In the presented protocol, honey bee feeding methods are described and applied to either an individual honey bee or to a colony. Here, the insect growth regulator (IGR) pyriproxyfen (PPN), which is widely used to control pest insects and is harmful to the development of honey bee larvae and pupae, is used as the pesticide. The presenting procedure can be applied to other potentially harmful chemicals or honeybee pathogens for further studies.

Introduction

De aanwezigheid van pesticiden in het milieu is een van de meest ernstige problemen die invloed heeft op de levensduur van een honingbij 1, 2, 3. Verschillende studies hebben de gemeenschappelijke aanwezigheid van residuen van bestrijdingsmiddelen in bijenkolonies en bijenproducten aangetoond. In Taiwan, het gemiddelde gebruik van pesticiden was 11-12 kg / ha per jaar (2005-2013). De hoeveelheid gebruikte pesticiden in Taiwan is hoger dan die van de EU-landen en de Latijns-Amerikaanse landen 4, 5. Met andere woorden, de bijenteelt milieu ernstige pesticide stress, vooral in Taiwan en mogelijk ook in andere landen.

De honingbij Apis mellifera is één van de belangrijkste bestuivers in landbouwsystemen 6 en het produceert ook waardevolle producten zoals honing. Echter, honingbijen zijn expoed aan verschillende pesticiden en deze bestrijdingsmiddelen kunnen terug naar bijenkorven na het foerageren op de bloemen die zijn bespoten met bestrijdingsmiddelen bij het verzamelen van nectar en stuifmeel 7, 8 worden gebracht. Ze kunnen ook worden blootgesteld aan pesticiden door de bijenhouders als doel plagen in de bijenkast 9, 10, 11 te regelen. Omdat honingbij larven worden gevoed door verpleegkundige bijen voor hun ontwikkeling, larven, drones en zelfs de koningin kan worden blootgesteld aan deze pesticide verontreinigde nectar en stuifmeel 12. De toxiciteit van verschillende bestrijdingsmiddelen honingbijen moet worden aangepakt 13.

Vele pogingen zijn gedaan om de problemen van milieu-residuen van bestrijdingsmiddelen te evalueren. Yang et al. testte de invloed van de neurotoxische insecticide imidacloprid op de ontwikkeling van de honingbij larven in debijenkorf en gemeld dat een sub-dodelijke dosis imidacloprid resulteerde in olfactorische associatief gedrag van de volwassen bijen 14. Ook Urlacher et al. onderzochten de sub-letale effecten van een organofosfaat pesticide, chloorpyrifos, op leerprestaties een honingbij werknemer onder laboratoriumomstandigheden 15. In onze vorige studie, evalueerden we de impact van een insect groei regulator (IGR), pyriproxyfen (PPN), op larvale honingbijen 16.

In deze paper presenteren we methoden voor de evaluatie van de chemische effecten op de ontwikkeling van de honingbijen. Honingbij voedermethoden werden beschreven en aangebracht op ofwel individuele bijen of een kolonie. In eerste instantie hebben we getest verschillende concentraties van pesticiden verontreinigde basic larvale dieet (BLD) op larven in de koloniën om de impact van het pesticide op de individuele honingbijen in vivo te evalueren. We gingen vervolgens over tot de natuurlijke condit simulerenionen van het pesticide met pesticide verontreinigde siroop in bijenkorven. Bij deze werkwijze wordt PPN, die wijd tegen plaaginsecten 17 en is schadelijk voor de ontwikkeling van honingbij larven en poppen 16, 18, 19, een indicator om het negatieve effect van het pesticide op het gebied vertegenwoordigen.

Protocol

1. Voorbereidingen Maak 1 liter 50% suikerstroop. Los 1 kg sucrose in 1 L DDH 2 O. Bereid pyriproxyfen (PPN) oplossing in BLD. Voeg 1,1 l 10.000 ppm PPN voorraadoplossing en verdun 100 ml PPN-oplossing in 1 liter gesteriliseerde DDH 2 O. Bewaar bij 4 ° C. Verdun de PPN voorraadoplossing tot eindconcentraties van 0,1, 1, 10 en 100 mg / kg (ppm) in de BLD voor het volgende experiment. Maak PPN-siroop (voor de kolonie niveau). Verdun het PPN stock eindconcentr…

Representative Results

For the honey bee field test, a queen was limited to the 4-frame section for laying eggs. This step could increase the brood density in one frame and facilitate subsequent observations. Each treatment was labelled, and the honey bees' development was clearly observed through a transparent slide. In vivo feeding of PPN-BLD to honey bee larvae in the beehive was performed to precisely evaluate the influence of PPN on the development of honey bees in the colony. Using the in…

Discussion

The queen-limited egg-laying method and queen-exchange method are critical steps for setting up honey bee groups for field testing within this protocol. The queen-limited egg-laying method permits synchronization of the life cycle of honey bees. Consequently, researchers can select 1 day-old larvae of the same age for treatment with different doses of pesticide. For the queen-exchange method, the queen was exchanged between part A (4 frames) and B (5 frames) to obtain different developmental stages of honey bee for field…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This research was supported by Grant 105AS-13.2.3-BQ-B1 from the Bureau of Animal and Plant Health Inspection and Quarantine, the Council of Agriculture, Executive Yuan and Grant 103-2313-B-197-002-MY3 from the Ministry of Science and Technology (MOST).

Materials

Honey bee box SAN-YI Honey Factory W1266 Honeybees rearing
Queen excluder (between frames) SAN-YI Honey Factory I1575 Queen limitation 
Queen excluder (on top ) SAN-YI Honey Factory I1566 Queen limitation on top 
Bee brush SAN-YI Honey Factory, Taiwan W1414 clean the bees on frame gently
Bee feeder SAN-YI Honey Factory, Taiwan P0219 feed sugar syrup to colony
Transparent slide Wan-Shih-Chei, Taiwan (http://www.mbsc.com.tw/a01goods.asp?s_id=40) 1139 Mark the larval area on the frames (Material: Polyethylene Terephthalate, PET) (Size= Length*Width*thick= 29.7mm*21mm*0.1mm)
24 well tissu culture plate Guangzhou Jet Bio-Filtration Co., Ltd TCP011024 Rearing pupae from extraction
Autoclave Tomin medical equipmenco., LTD. TM-321 Make sterilized distilled deionized water (ddH2O)
P20 pipetman Gilson F123600 Add PPN into bee larval food pool
Incubator  Yihder Co., Ltd. LE-550RD Rearing pupae from extraction
Kimwipes COW LUNG INSTRUMENT CO., LTD KCS34155 Rearing pupae from extraction
Royal jelly National Ilan University (NIU) NIU Make basic larval diet (BLD)
D-(+)-Glucose Sigma G8270 Make basic larval diet (BLD)
D-(-)-Fructose Sigma F0127 Make basic larval diet (BLD)
Yeast extract CONDA, pronadisa 1702 Make basic larval diet (BLD)
Sucrose Taiwan sugar coporation E01071010 Make sugar syrup for bee food
Pyriproxyfen (11%) LIH-NUNG CHEMICAL CO.. LTD. Registration No. 1937 Insect growth regulator (IGR) used in the experiment

Riferimenti

  1. Ruffi nengo, S. R., et al. Integrated pest management to control Varroa destructor and its implications to Apis mellifera colonies. Zootecnia Trop. 32 (2), 149-168 (2014).
  2. Mullin, C. A., et al. High levels of miticides and agrochemicals in North American apiaries, implications for honey bee health. PLoS One. 5, e9754 (2010).
  3. Lu, C. A., Chang, C. H., Tao, L., Chen, M. Distributions of neonicotinoid insecticides in the Commonwealth of Massachusetts, a temporal and spatial variation analysis for pollen and honey samples. Environ. Chem. 13, 4-11 (2016).
  4. Tsai, W. T. Analysis of coupling the pesticide use reduction with environmental policy for agricultural sustainability in Taiwan. Environ. & Pollut. 2, 59-65 (2013).
  5. Weng, Z. H. Pesticide market status and development trend (in Chinese). PRIDE. , (2016).
  6. Kevan, P. G. Pollinators as bioindicators of the state of the environment, species, activity and diversity. Agric. Ecosys. Environ. 74 (1-3), 373-393 (1999).
  7. Kevan, P. G. Forest application of the insecticide fenitrothion and its effect on wild bee pollinators (Hymenoptera: Apoidea) of lowbush blueberries (Vaccinium SPP.) in Southern New Brunswick, Canada. Biol. Conserv. 7, 301-309 (1975).
  8. Crane, E., Walker, P. . The impact of pest management on bees and pollination. , (1983).
  9. Haouar, M., Decormis, L., Rey, J. Fluvalinate applied to flowering apple trees-contamination of honey-gathering bees and hive products. Agronomie. 10 (2), 133-137 (1990).
  10. Chauzat, M. P., et al. A survey of pesticide residues in pollen loads collected by honey bees in France. J. Econ. Entomol. 99 (2), 253-262 (2006).
  11. Bonzini, S., Tremolada, P., Bernardinelli, I., Colombo, M., Vighi, M. Predicting pesticide fate in the hive (part 1), experimentally determined τ-fluvalinate residues in bees, honey and wax. Apidologie. 42 (3), 378 (2011).
  12. Sanchez-Bayo, F., Goka, K. Pesticide residues and bees-a risk assessment. PLoS One. 9 (4), e94482 (2014).
  13. Johnson, R. M., Ellis, M. D., Mullin, C. A., Frazier, M. Pesticides and honey bee toxicity-USA. Apidologie. 41, 312-331 (2010).
  14. Yang, E. C., Chang, H. C., Wu, W. Y., Chen, Y. W. Impaired olfactory associative behavior of honeybee workers due to contamination of imidacloprid in the larval stage. PLoS One. 7, e49472 (2012).
  15. Urlacher, E., et al. Measurements of chlorpyrifos levels in forager bees and comparison with levels that disrupt honey bee odor-mediated learning under laboratory conditions. J. Chem. Ecol. 42 (2), 127-138 (2016).
  16. Chen, Y. W., Wu, P. S., Yang, E. C., Nai, Y. S., Huang, Z. Y. The impact of pyriproxyfen on the development of honey bee (Apis mellifera L.) colony in field. J. Asia Pac. Entomol. 19 (3), 589-594 (2016).
  17. Dennehy, T. J., DrGain, B. A., Harpold, V. S., Brink, S. A., Nichols, R. L. . Whitefly Resistance to Insecticides in Arizona: 2002 and 2003 Results. , 1926-1938 (2004).
  18. Yang, E. C., Wu, P. S., Chang, H. C., Chen, Y. W. Effect of sub-lethal dosages of insecticides on honey bee behavior and physiology. , (2010).
  19. Fourrier, J., et al. Larval exposure to the juvenile hormone analog pyriproxyfen disrupts acceptance of and social behavior performance in adult honey bees. PLoS One. 10, e0132985 (2015).
  20. Hanley, A. V., Huang, Z. Y., Pett, W. L. Effects of dietary transgenic Bt corn pollen on larvae of Apis mellifera and Galleria mellonella. J. Apicult.Res. 42 (4), 77-81 (2003).
  21. Kaftanoglu, O., Linksvayer, T. A., Page, R. E. Rearing honey bees, apis mellifera, in vitro 1, effects of sugar concentrations on survival and development. J. Insect Sci. 11 (96), 1-10 (2011).
  22. Vandenberg, J. D., Shimanuki, H. Technique for rearing worker honey bees in the laboratory. J. Apicult. Res. 26 (2), 90-97 (1987).
  23. Peng, Y. S. C., Mussen, E., Fong, A., Montague, M. A., Tyler, T. Effects of chlortetracycline on honey bee worker larvae reared in vitro. J. Invertebr.Pathol. 60 (2), 127-133 (1992).
  24. Bitondi, M. M., Mora, I. M., Simoes, Z. L., Figueiredo, V. L. The Apis mellifera pupal melanization program is affected by treatment with a juvenile hormone analogue. J. Insect Physiol. 44 (5-6), 499-507 (1998).
  25. Zufelato, M. S., Bitondi, M. M., Simoes, Z. L., Hartfelder, K. The juvenile hormone analog pyriproxyfen affects ecdysteroid-dependent cuticle melanization and shifts the pupal ecdysteroid peak in the honey bee (Apis mellifera). Arthropod Struct. Dev. 29 (2), 111-119 (2000).
  26. Santos, A. E., Bitondi, M. M., Simoes, Z. L. Hormone-dependent protein patterns in integument and cuticular pigmentation in Apis mellifera during pharate adult development. J. Insect Physiol. 47 (11), 1275-1282 (2001).
  27. Brouwers, E. V. M. Glucose/Fructose ratio in the food of honeybee larvae during caste differentiation. J. Apicult.Res. 23 (2), 94-101 (1984).
  28. Howe, S. R., Dimick, P. S., Benton, A. W. Composition of freshly harvested and commercial royal jelly. J. Apicult. Res. 24 (1), 52-61 (1985).
check_url/it/55296?article_type=t

Play Video

Citazione di questo articolo
Ko, C., Chen, Y., Nai, Y. Evaluating the Effect of Environmental Chemicals on Honey Bee Development from the Individual to Colony Level. J. Vis. Exp. (122), e55296, doi:10.3791/55296 (2017).

View Video