Summary

在直肠癌原位小鼠模型中循环肿瘤细胞的分离

Published: July 18, 2017
doi:

Summary

我们描述了通过将肿瘤细胞或有机体注入小鼠盲肠并随后从该模型中分离循环肿瘤细胞(CTC)来建立原位结肠直肠肿瘤。

Abstract

尽管皮下小鼠模型具有易于适用性和成本效益的优点,但其严重限制并不能准确模拟肿瘤生物学和肿瘤细胞传播。引入原位小鼠模型来克服这些局限性;然而,这种模型在技术上是苛刻的,特别是在诸如大肠的中空器官中。为了产生可靠地生长和转移的均匀的肿瘤,肿瘤细胞制备和注射的标准化技术至关重要。

我们已经开发了一种大肠癌(CRC)的原位小鼠模型,其发展高度均匀的肿瘤,并且可以用于肿瘤生物学研究以及治疗试验。将来自原发性肿瘤,二维(2D)细胞系或3维(3D)有机体的肿瘤细胞注射到盲肠中,并且根据注射的肿瘤细胞的转移潜能形成高度转移性肿瘤。此外,定期发现反恐委员会。我们这里描述来自2D细胞系和3D组织以及原发性肿瘤组织的肿瘤细胞制备技术,手术和注射技术以及来自荷瘤小鼠的CTC的分离以及目前的故障提示。

Introduction

结肠直肠癌(CRC)是西方国家癌症死亡的最常见原因之一。 1原发性肿瘤经常可以切除,远处转移的发生显着恶化预后,并常常导致死亡。 2,3转移的生物学相关成分被循环肿瘤细胞(CTC),其从肿瘤分离,生存中循环,附着在上皮在靶器官,侵入器官,并最终长大到新的病灶。 4虽然CTC的已知是预后相关,5,6,7,8,9其生物学仅部分地理解为在CRC其极端罕见的结果。 10

鼠标模型是一个强大的tool研究癌症生物学的各个方面。通过将肿瘤细胞皮下注射到受体小鼠中产生经典的皮下肿瘤模型,其可以是免疫活性的(如果使用同基因鼠肿瘤细胞)或免疫缺陷。皮下肿瘤模型价格低廉,数据量快;它们的终点肿瘤生长可以容易地和非侵入性地测量。然而,在这些模型中已经证明抗肿瘤活性的新化合物中有88%在临床试验中失败。 11这部分是由于人和小鼠之间间差异;然而,这种失败的很大一部分是由于皮下小鼠模型的预测值低。

因此,肿瘤细胞注射入原发器官并因此在其原始微环境中生长的原位小鼠模型因此越来越多地用于癌症研究。 11,12, </s达> 13,14款原位不只是模拟局部肿瘤的生长条件;作为肿瘤生长的解剖学上正确的位点的结果,原位小鼠模型也允许转移的逼真的模拟,因此用于研究生物学CTC 8,15,16或它们的在CRC不同处理的响应。 13,17

原位小鼠模型的主要缺点是其技术复杂性。取决于注射细胞的器官,直到实验者能够诱导可再现肿瘤的学习曲线相当长。这尤其适用于结肠直肠癌模型,因为肿瘤细胞需要注射到肠壁中,这通常导致穿孔,肿瘤细胞渗漏或腔内肿瘤细胞损失。这是本文旨在描述从原代组织样品,2D细胞系和3D有机体培养物中注射细胞至小鼠盲肠的细胞制备方法。这里描述的技术导致高度均匀的肿瘤,并且取决于用于注射的细胞系的肿瘤生物学,在受体小鼠中可重复形成远处转移和CTC。 15

Protocol

这里提出的动物实验由机构和政府动物护理和使用委员会进行独立审查和许可,并根据实验动物科学协会联合会 (FELASA)指导进行。采取一切可能的措施,尽量减少包括麻醉和镇痛在内的痛苦,或必要时提早安乐死。 1.细胞和组织的制备注意:对于每次注射,使用20μL的体积,100,000个细胞。使用基底膜基质(BMM),以防止泄漏并确保标准化注射。?…

Representative Results

在该模型中成功和可重复地产生结肠直肠肿瘤严重依赖于细胞的精确注射而没有溢出或渗漏。如果这样做,这种模式是非常可靠的,很少造成人造腹膜传播。肿瘤的生长动力学及其传播模式取决于所用组织和细胞的生物学特性。 15在本模型中,HCT116细胞可靠地转移到肝脏,SW620细胞形成原位肿瘤,但不转移。 15 <p class="jove_content" fo:kee…

Discussion

尽管它们在皮下小鼠模型中具有临床前证实的活性,但大多数新型化合物在临床试验中失败,从未到达诊所。 11这明显皮下小鼠模型的功能不全,以精确地模拟肿瘤的生物学和生长模式导致基于喷射的肿瘤细胞直接导入原始器官原位小鼠模型的发展。

原位小鼠模型能够比皮下模型更准确地模拟实体瘤的生物学和传播。 15然而,主要的缺点?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了德国研究基金会(WE 3548 / 4-1)和Gandundheitswesen(1/14)的Roland-Ernst-Stiftung的支持。

Materials

Cell culture Media and Components
Advanced DMEM F12 Invitrogen 12634010 DMEM/ F12 +++ medium
HEPES (1 M) Life Technologies GmbH 15630056 DMEM/ F12 +++ medium
Glutamax-I Supplement (200 mM) Life Technologies GmbH 35050038 DMEM/ F12 +++ medium
Penicillin/Streptomycin (PenStrep) Life Technologies GmbH 15140122 DMEM/ F12 +++ medium
DMEM Life Technologies GmbH 61965026 basic medium of 2D cell lines (DMEM/10%FCS)
Fetal Calf Serum (FCS) BIOCHROM AG S 0115 basic medium of 2D cell lines (DMEM/10%FCS)
TrypLE Express enzymatic dissociation buffer Life Technologies GmbH 12604021
Matrigel basement membrane matrix (BMM, phenol red free) CORNING B.V. Life Sciences 356231
Dulbecco's Phosphate Buffered Saline Life Technologies GmbH 14190169
Trypsin-EDTA (0,25%, Phenol-Red) Life Technologies GmbH 25200072
6-/48-well plates with lid CORNING 3516/3548
cell culture flask 75cm², 250 mL VWR International GmbH 734-2066
cell culture flask 150cm², 600 mL Corning B.V. Life Sciences 355001
Eppendorf tubes 1,5 mL / 2 mL Sarstedt AG & Co. 72.706.400/ 72.695.400
15 ml, 50 ml centrifuge tubes Greiner-Bio-One GmbH 188271/227270
TC10 Counting Slides (for TC20 Counting Machine) Bio-Rad Laboratories GmbH 1450016
Pasteur pipettes (glass, 150 mm) Fisher Scientific GmbH 11546963/ FB50251 thinly pulled by using a bunsen burner
gentleMACS Dissociator Miltenyi Biotec 130-093-235 for primary tumor tissue preparation
MACSmix Tube Rotator Miltenyi Biotec 130-090-753 for primary tumor tissue preparation
gentleMACS C Tubes Miltenyi Biotec 130-093-237 for primary tumor tissue preparation
Human Tumor Dissociation Kit Miltenyi Biotec 130-095-929 for primary tumor tissue preparation
Falcon 70µm Cell Strainer Corning B.V. Life Sciences 352350 for primary tumor tissue preparation
Name Company Catalog Number Comments
Surgical Equipment
Sevoflurane AbbVie Germany GmbH & Co. KG
Medical oxygen Air Liquide Medical GmbH
Buprenorphine Temgesic
Bepanthen – opthalmic ointment Bayer Vital GmbH 10047757
Normal saline 0.9% (E154) Serumwerk Bernburg AG 10013
Aqua ad injectabilia Braun 235144
1 mL Syringe (without dead volume) – Injekt-F SOLO Braun/neoLab 194291661
30G injection needle BECTON DICKINSON 304000
cellulose swabs Lohmann & Rauscher Deutschland 13356
Micro-Adson Forceps FST – Fine Science Tools 11018-12
Iris Scissor – ToughCut FST – Fine Science Tools 14058-11
Olsen-Hegar Needle Holder FST – Fine Science Tools 12002-12
AutoClip Kit FST – Fine Science Tools 12020-00
PDS Z1012H 6/0 C1 (surgical suture) Johnson & Johnson Medical GmbH Z1012H
Table Top Research Anesthesia Machine w/O2 Flush and a Sevoflurane Vaporizer Parkland Scientific V3000PS/PK
UltraMicro Pump with Micro4 Controller World Precision Instruments UMP3-4 equipment for highly controlled orthotopic injection
Footswitch for SYS-Micro4 Controller World Precision Instruments 15867 equipment for highly controlled orthotopic injection
Three-axis Manual Micromanipulator World Precision Instruments M325 equipment for highly controlled orthotopic injection
Magnetic Stand for Micromanipulator World Precision Instruments M10 equipment for highly controlled orthotopic injection
Steel Base Plate for M10 Magnetic Stand World Precision Instruments 5479 equipment for highly controlled orthotopic injection
Hot Plate 062 Labotect 13854
Isis – Hair shaver AESCULAP – Braun
Binocular Surgical Microscope Parkland Scientific VS-2Z
Name Company Catalog Number Comments
CTC isolation
EDTA Roth 8040.1
Density gradient medium – Ficoll StemCell – Lymphoprep 7801
Alexa Fluor 488 anti-human CD326 (EpCAM) Antibody clone 9C4 BioLegend 324210
Alexa Fluor 488 anti-mouse CD326 (EpCAM) Antibody clone G8.8 BioLegend 118210
Petri Dish, ø 60 x 15 mm, 21 cm², Vent Greiner bio-one 628102
Fluorescence Cell Culture Microscope Leica
Transferman 4r Micromanipulator Eppendorf
CellTram Air Eppendorf aspiration pump connected to the micromanipulator
Dmz Universal Microelectrode Puller Dagan Corporation required for the manufacturing of micro capillaries for single cell aspiration
Prism Glass Capillaries Dagan Corporation
PAP pen Abcam ab2601
Dulbecco's Phosphate Buffered Saline Life Technologies GmbH 14190169 picking buffer
Fetal Calf Serum (FCS) BIOCHROM AG S 0115 picking buffer
Penicillin/Streptomycin (PenStrep) Life Technologies GmbH 15140122 picking buffer
EDTA Roth 8040.1 picking buffer
Name Company Catalog Number Comments
Immunohistochemistry
Purified anti-human CD326 (EpCAM) antibody clone 9C4 BioLegend 324201 EpCAM immunohistochemistry (cf, fig 2C)
HRP rabbit anti-mouse IgG Abcam ab97046 EpCAM immunohistochemistry (cf, fig 2C)

Riferimenti

  1. Siegel, R. L., Miller, K. D., Jemal, A. Cancer statistics, 2016. CA Cancer J Clin. 66 (1), 7-30 (2016).
  2. Weitz, J., Koch, M., Debus, J., Höhler, T., Galle, P. R., Büchler, M. W. Colorectal cancer. Lancet. 365 (9454), 153-165 (2005).
  3. Schölch, S., et al. Circulating tumor cells of colorectal cancer. Cancer Cell Microenviron. 1 (5), (2014).
  4. Steinert, G., Schölch, S., Koch, M., Weitz, J. Biology and significance of circulating and disseminated tumour cells in colorectal cancer. Langenbecks Arch Surg. 397 (4), 535-542 (2012).
  5. Bork, U., et al. Prognostic relevance of minimal residual disease in colorectal cancer. World J Gastroenterol. 20 (30), 10296-10304 (2014).
  6. Bork, U., et al. Circulating tumour cells and outcome in non-metastatic colorectal cancer: a prospective study. Br J Cancer. 112 (8), 1306-1313 (2015).
  7. Rahbari, N. N., et al. Compartmental differences of circulating tumor cells in colorectal cancer. Ann Surg Oncol. 19 (7), 2195-2202 (2012).
  8. Rahbari, N. N., et al. Metastatic Spread Emerging From Liver Metastases of Colorectal Cancer: Does the Seed Leave the Soil Again?. Ann Surg. 263 (2), 345-352 (2016).
  9. Rahbari, N. N., et al. Meta-analysis shows that detection of circulating tumor cells indicates poor prognosis in patients with colorectal cancer. Gastroenterology. 138 (5), 1714-1726 (2010).
  10. Steinert, G., et al. Immune Escape and Survival Mechanisms in Circulating Tumor Cells of Colorectal Cancer. Cancer Res. 74 (6), 1694-1704 (2014).
  11. Sharpless, N. E., Depinho, R. A. The mighty mouse: genetically engineered mouse models in cancer drug development. Nat Rev Drug Discov. 5 (9), 741-754 (2006).
  12. Roper, J., Hung, K. E. Priceless GEMMs: genetically engineered mouse models for colorectal cancer drug development. Trends Pharmacol Sci. 33 (8), 449-455 (2012).
  13. Schölch, S., et al. Radiotherapy combined with TLR7/8 activation induces strong immune responses against gastrointestinal tumors. Oncotarget. 6 (7), 4663-4676 (2015).
  14. Schölch, S., Rauber, C., Weitz, J., Koch, M., Huber, P. E. TLR activation and ionizing radiation induce strong immune responses against multiple tumor entities. Oncoimmunology. 4 (11), e1042201 (2015).
  15. Schölch, S., et al. Circulating tumor cells exhibit stem cell characteristics in an orthotopic mouse model of colorectal cancer. Oncotarget. 7 (19), 27232-27242 (2016).
  16. Nanduri, L. K., García, S., Weitz, J., Schölch, S. Mouse Models of Colorectal Cancer-Derived Circulating Tumor Cells. Med Chem (Los Angeles). 6 (7), 497-499 (2016).
  17. van Noort, V., et al. Novel Drug Candidates for the Treatment of Metastatic Colorectal Cancer through Global Inverse Gene-Expression Profiling. Cancer Res. 74 (20), 5690-5699 (2014).
  18. Sato, T., et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 141 (5), 1762-1772 (2011).
  19. Boj, S. F., et al. Organoid models of human and mouse ductal pancreatic cancer. Cell. 160 (1-2), 324-338 (2015).
  20. Gao, D., et al. Organoid cultures derived from patients with advanced prostate cancer. Cell. 159 (1), 176-187 (2014).
  21. Ito, M., et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood. 100 (9), 3175-3182 (2002).
  22. Simon, M. M., et al. A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains. Genome Biol. 14 (7), R82 (2013).
  23. Kalish, S., et al. C57BL/6N Mice Are More Resistant to Ehrlich Ascites Tumors Than C57BL/6J Mice: The Role of Macrophage Nitric Oxide. Med Sci Monit Basic Res. 21, 235-240 (2015).
  24. Tseng, W., Leong, X., Engleman, E. Orthotopic mouse model of colorectal cancer. J Vis Exp. (10), e484 (2007).
  25. Roper, J., et al. Combination PI3K/MEK inhibition promotes tumor apoptosis and regression in PIK3CA wild-type, KRAS mutant colorectal cancer. Cancer Lett. 347 (2), 204-211 (2014).
  26. Coffee, E. M., et al. Concomitant BRAF and PI3K/mTOR blockade is required for effective treatment of BRAF(V600E) colorectal cancer. Clin Cancer Res. 19 (10), 2688-2698 (2013).
  27. Belmont, P. J., et al. Resistance to dual blockade of the kinases PI3K and mTOR in KRAS-mutant colorectal cancer models results in combined sensitivity to inhibition of the receptor tyrosine kinase EGFR. Sci Signal. 7 (351), ra107 (2014).
  28. Hung, K. E., et al. Development of a mouse model for sporadic and metastatic colon tumors and its use in assessing drug treatment. Proc Natl Acad Sci USA. 107 (4), 1565-1570 (2010).
  29. Wang, F., Johnson, R. L., Snyder, P. W., DeSmet, M. L., Fleet, J. C. An Inducible, Large-Intestine-Specific Transgenic Mouse Model for Colitis and Colitis-Induced Colon Cancer Research. Dig Dis Sci. 61 (4), 1069-1079 (2016).
  30. Xue, Y., Johnson, R., Desmet, M., Snyder, P. W., Fleet, J. C. Generation of a transgenic mouse for colorectal cancer research with intestinal cre expression limited to the large intestine. Mol Cancer Res. 8 (8), 1095-1104 (2010).
  31. Tetteh, P. W., et al. Generation of an inducible colon-specific Cre enzyme mouse line for colon cancer research. Proc Natl Acad Sci USA. 113 (42), 11859-11864 (2016).
check_url/it/55357?article_type=t

Play Video

Citazione di questo articolo
Kochall, S., Thepkaysone, M., García, S. A., Betzler, A. M., Weitz, J., Reissfelder, C., Schölch, S. Isolation of Circulating Tumor Cells in an Orthotopic Mouse Model of Colorectal Cancer. J. Vis. Exp. (125), e55357, doi:10.3791/55357 (2017).

View Video