Summary

访问有价值的配体为支持过渡金属:1,2,3,4,5-五甲基环戊二烯的一种改进,中级规模制备

Published: March 20, 2017
doi:

Summary

1,2,3,4,5-五甲基环戊二烯(的Cp * H)的可靠,中间规模制备呈现。为配位体的合成和纯化的订正协议最小化了专门的实验室设备的需要,同时简化反应workups和产物纯化。的Cp * H中的[Cp * MCL 2]的合成中的应用也被描述2复合物(M =钌,铱)。

Abstract

1,2,3,4,5-五甲基环戊二烯为(Cp * H)的一个可靠的,中间规模制备提出的基础上,从初始2-溴-2-丁烯锂化,随后通过酸介导的二烯醇环化派生现有协议的修改。配位体的经修订的合成和纯化避免使用机械搅拌的同时仍允许访问以良好的收率(58%)的Cp * H的显著量(39克)。该过程还提供了其他额外的益处,包括生产中间heptadienols期间过量锂的更可控的骤冷和足够的纯度的Cp * H的用于与过渡金属金属取代的简化隔离。该配体随后被用于合成的[Cp * MCL 2] 2配合物既铱和钌的证明* H制备和由我们的方法纯化的Cp的效用。本文介绍的步骤提供了一个无所不在的辅助配体燮得以大量端口中的有机金属化学中使用,同时减少对专门的实验室设备的需要,从而提供了一种更简单和更方便入口点1,2,3,4,5-五甲基环戊二烯的化学。

Introduction

由于二茂铁的20世纪50年代发现和结构鉴定,1,2,3,4环戊二烯(CP)取代配体的有机金属化学的发展起到了至关重要的作用。这些配位体都充当为一系列金属多功能辅助支撑,导致7的激活和小分子的官能化,8,9,10,11,12,13和催化异常结构和键合的研究,5,6,包括烯烃聚合。 14,15

1,2,3,4,5-五甲基环戊为(Cp *)阴离子已被证明是在过渡和主族金属的化学一特别有价值的配体,如甲基基团赋予更大的位阻保护作用,由阴离子配体增加的电子捐款,并阻止潜在的活化的环戊二烯基环。 16,17 *的Cp配体即使在今天仍然适用,作为阴离子最近被用来支持通过红外H / D交换(III),18,19和共轭胺化氢转移由钛介(III)。 20

我们在CP *配位体的兴趣从访问的小分子活化钴(Ⅰ)使用的反应性源的愿望茎。 21这些研究已经导致两个Cp *钴I和Cp的代*钴I L(L = N-杂环卡宾)当量用于sp 3SP 2 CH键氧化加成。 22,23,24作为访问我们的Cp *钴(II)的原料必要1,2,3,4,5-五甲基环戊二烯的显著数量,我们desired厘multigram合成* H,给予的实质性商务成本配体。

两个主要的方法目前存在的Cp * H,其中每个呈现固有的技术挑战的大规模制备。由标记和他的同事开发的方法包括2,3,4,5- tetramethylcyclopent -2-烯酮随后安装使用甲基锂最后甲基组成的两步​​合成。 25的合成大规模所述,使用一个12升的反应容器中,并机械搅拌,同时还要求持续的低温在0℃冷却四天。

另一种方法最初开发通过Bercaw和同事,26后来被改编马克斯27利用了原位生成烯锂为乙酸乙酯亲核攻击产生的3,4,5-三甲基-2,5- heptadien -4-醇的异构体混合物接着进行酸介导的环化,以提供的Cp * H。这种方法的初步报告是在一个大的(3-5升)的规模进行,所需的机械搅拌。此外,使用一个显著过量的锂金属的,复杂的淬火和中间heptadienols随后后处理。该过程的后续修订比例降低的反应和锂,28的量,但在反应混合物的安全淬火仍然是一个问题。由于在锂源和纯度或2-溴-2-丁烯反应物干燥度差异再现性的烯基中的锂,的启动被进一步指出的担忧。定为prepari常用程序,这些问题NG的Cp * H,看着我们发展到配体更好地获取在中间标度(30-40克),这将规避使用专业实验室玻璃器皿及设备,提高反应的重现性和安全性,并简化后处理和净化的配体。

这里,我们报告1,2,3,4,5-五甲基环戊二烯的那合成,基于由Bercaw和同事开发了现有程序的修改。配位体的经修订的合成和纯化完成上面概述的主要目标,同时允许获得良好的产率(58%)的Cp * H的大量(39克)。该过程还提供了其他额外的益处,包括生产中间heptadienols期间过量锂的更可控的骤冷和足够的纯度的Cp * H的用于与过渡金属随后金属化的简化隔离。为了证明制备的配位体的用途,它被用于合成2的[Cp * MCL 2] 2(M= IR,RU)配合。下面概述的订正协议补充现有的程序,并提供一种更简单和更容易进入点在有机金属化学的一个普遍存在的辅助配体载体的化学性质。

Protocol

1的异构体混合物的合成3,4,5-三甲基-2,5- heptadien -4-醇 填充干燥烘箱,500毫升的烧杯中,用200ml己烷中并用烘箱干燥表玻璃覆盖。 在一个空罩,用干净的剪刀剪下锂丝的一半英寸件。擦拭纸巾上的每个锂片以除去过量的矿物油,直至所有油似乎是从金属表面除去,并且在该含烧杯己烷放置。 填充干燥烘箱,250毫升烧杯用100ml己烷中并用烘箱干燥表玻璃覆盖。去皮天?…

Representative Results

上述的Cp * H合成所述的协议依赖于三个步骤过程通过Bercaw和同事开发和商标改性( 图1)的变形例。空气敏感烯基锂在原位通过锂/卤素交换反应而制备由顺式和反式 -2-丁烯的混合物,随后用乙酸乙酯淬灭以制备heptadienols的异构体混合物。该混合物可以不经进一步纯化即可使用的酸介导的环化,以提供单所需产物中,Cp * H。 <p class="jove_co…

Discussion

在制备heptadienol混合物,它以清洁锂发起与2-溴-2-丁烯反应之前是重要的。这是通过擦去用于纸巾存储残余的矿物油,该油出现完全从表面上除去的点,通过在己烷中的烧杯任何剩余油溶解完成。作为接收和在过程中使用前不作进一步干燥,使用了己烷。因为无论是大型反应和使用过量的锂时,通过差分法称量,以确定锂的质量是足够的。它以猝灭在发动机罩的所有材料切割和称重锂,以尽量减少…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们感谢美国国家科学基金会(CHE-1300508)和圣玛丽山大学(启动和夏季学院发展)慷慨支持这项工作。本鲁珀特(特拉华大学,质谱设施)被确认为LIFDI质谱分析鉴定。

Materials

Materials
Lithium wire (in mineral oil) Aldrich 278327-100G >98%
2-bromo-2-butene (mixture of cis/trans isomers) Acros 200016-364   98%, dried over molecular sieves from an oven overnight before use
Hexanes Millipore HX0299-3 GR ACS, used as received
Ethyl actetate Millipore EX0240-3 GR ACS, dried over molecular sieves from an oven overnight before use
Ammonium chloride Aldrich 213330-2.5kg ACS Reagent
Diethyl ether Millipore EX0190-5 GR ACS, collected from a solvent purification system before use
Magnesium sulfate Aldrich 793612-500g Anhydrous, reagent grade
p-toluene sulfonic acid monohydrate Fisher A320-500 ACS Certified
Sodium bicarbonate Fisher 5233-500 ACS Certified
Sodium carbonate Amresco 0585-500g
Ruthenium (III) chloride trihydrate Pressure Chemical 4750 40% Metal
Iridium (III) chloride hydrate Pressure Chemical 5730 53% Metal
Methanol Avantor 3016-22 AR ACS, distilled from Mg before use
Pentane J. T. Baker T007-09 >98%, dried with a solvent purification system before use
Chloroform-d Aldrich 151823-150G 99.8 atom % D
Molecular sieves 4Å  Aldrich 208590-1KG dried in an oven at 140 °C before use 
Celite 545 Acros AC34967-0025 dried in an oven at 140 °C before use 
Name Company Catalog Number Comments
Equipment
Schlenk line, with vacuum and inert gas manifolds Custom NA Used in Preps 1-4
Solvent transfer manifold Chemglass AF-0558-01 Used in 2.2
Airfree filter funnel Chemglass AF-0542-22 Used in 3.1.3
Glovebox Vacuum Atmospheres OMNI Used in 3.2.2

Riferimenti

  1. Kealy, T. J., Pauson, P. L. A new type of organo-iron compound. Nature. 168, 1039-1040 (1951).
  2. Wilkinson, G., Rosenblum, M., Whiting, M. C., Woodward, R. B. The structure of iron bis-cyclopentadienyl. J. Am. Chem. Soc. 74, 2125-2126 (1952).
  3. Fischer, E. O., Pfab, W. Z. Cyclopentadien-Metallkomplexe, ein neuer Typ metallorganischer Verbindungen. Z. Naturforsch. 76, 377-379 (1952).
  4. Pauson, P. L. Ferrocene-how it all began. J. Organomet. Chem. 637-639, 3-6 (2001).
  5. Lauher, J. W., Hoffmann, R. Structure and chemistry of bis(cyclopentadienyl)-MLn complexes. J. Am. Chem. Soc. 98, 1729-1742 (1976).
  6. Resa, I., Carmona, E., Gutierrez-Puebla, E., Monge, A. Decamethyldizincocene, a stable compound of Zn(I) with a Zn-Zn bond. Science. 305, 1136-1138 (2004).
  7. Brintzinger, H., Bercaw, J. E. Nature of so-called titanocene, (C10H10Ti)2. J. Am. Chem. Soc. 92, 6182-6185 (1970).
  8. King, R. B. Some applications of metal carbonyl anions in the synthesis of unusual organometallic compounds. Acc. Chem. Res. 3, 417-427 (1970).
  9. Chirik, P. J. Group 4 transition metal sandwich complexes: still fresh after almost 60 years. Organometallics. 29, 1500-1517 (2010).
  10. Bengali, A. A., Schultz, R. H., Moore, C. B., Bergman, R. G. Activation of the C-H bonds in neopentane and neopentane-d12 by (η5-C5(CH3)5)Rh(CO)2: Spectroscopic and temporal resolution of rhodium-krypton and rhodium-alkane complex intermediates. J. Am. Chem. Soc. 116, 9585-9589 (1994).
  11. Shima, T., Hu, S., Luo, G., Kang, X., Luo, Y., Hou, Z. Dinitrogen cleavage and hydrogenation by a trinuclear titanium polyhydride complex. Science. 340, 1549-1552 (2013).
  12. Negishi, E. -. I., Takahashi, T. Alkene and alkyne complexes of zirconocene. Their preparation, structure, and novel transformations. Bull. Chem. Soc. Jpn. 71, 755-769 (1998).
  13. Rosenthal, U., Burlakov, V. V., Arndt, P., Baumann, W., Spannenberg, A. The titancocene complex of bis(trimethylsilyl)acetylene: Synthesis, structure, and chemistry. Organometallics. 22, 884-900 (2003).
  14. Jordan, R. F., Bradley, P. K., LaPointe, R. E., Taylor, D. F. Cationic zirconium catalysts for carbon-carbon bond forming chemistry. New J. Chem. 14, 505-511 (1990).
  15. Ewen, J. A. Symmetry rules and reaction mechanisms of Ziegler-Natta catalysts. J. Mol. Catal. 128, 103-109 (1998).
  16. Manriquez, J. M., Bercaw, J. E. Preparation of a dinitrogen complex of bis(pentamethylcyclopentadienyl)zirconium(II). Isolation and protonation leading to the stoichiometric reduction of dinitrogen to hydrazine. J. Am. Chem. Soc. 96, 6229-6230 (1974).
  17. Brintzinger, H. H., Bercaw, J. E. Bis(pentamethylcyclopentadienyl)titanium(II). Isolation and reactions with hydrogen, nitrogen, and carbon monoxide. J. Am. Chem. Soc. 93, 2045-2046 (1971).
  18. Lehman, M. C., Gary, J. B., Boyle, P. D., Sanford, M. S., Ison, E. A. Effect of solvent and ancillary ligands on the catalytic H/D exchange reactivity of Cp*IrIII(L) complexes. ACS Catal. 3, 2304-2310 (2013).
  19. Pitman, C. L., Finster, O. N. L., Miller, A. J. M. Cyclopentadiene-mediated hydride transfer from rhodium complexes. Chem. Commun. 52, 9105-9108 (2016).
  20. Tarantino, K. T., Miller, D. C., Callon, T. A., Knowles, R. R. Bond-weakening catalysis: Conjugate aminations enabled by the soft homolysis of strong N-H bonds. J. Am. Chem. Soc. 137, 6440-6443 (2015).
  21. Bolig, A. D., Brookhart, M. Activation of sp3 C-H bonds with cobalt(I): Catalytic synthesis of enamines. J. Am. Chem. Soc. 129, 14544-14545 (2007).
  22. Hung-Low, F., Tye, J. W., Cheng, S., Bradley, C. A. sp2 C-H activation of dimethyl fumarate by a [(Cp*Co)2-µ-(η4:η4-toluene)] complex. Dalton Trans. 41 (26), 8190-8197 (2012).
  23. Hung-Low, F., Krogman, J. P., Tye, J. W., Bradley, C. A. Development of more labile low electron count Co(I) sources: mild, catalytic functionalization of activated alkanes using a [(Cp*Co)2-µ-(η4:η4-arene)] complex. Chem. Commun. 48 (3), 368-370 (2012).
  24. Andjaba, J. M., Tye, J. W., Yu, P., Pappas, I., Bradley, C. A. Cp*Co(IPr): synthesis and reactivity of an unsaturated Co(I) complex. Chem. Commun. 52, 2469-2472 (2016).
  25. Fendrick, C. M., Schertz, L. D., Mintz, E. A., Marks, T. J. Large-scale synthesis of 1,2,3,4,5-pentamethylcyclpentadiene. Inorg. Synth. 29, 193-198 (1992).
  26. Threlkel, R. S., Bercaw, J. E. A Convenient synthesis of alkyltetramethylcyclopentadienes and phenyltetramethylcyclopentadiene. J. Organomet. Chem. 136, 1-5 (1977).
  27. Manriquez, J. M., Fagan, P. J., Schertz, L. D., Marks, T. J. 1,2,3,4,5-pentamethylcyclopentadiene. Inorg Synth. 28, 317-320 (1990).
  28. Threlkel, R. S., Bercaw, J. E., Seidler, P. F., Stryker, J. M., Bergman, R. G. 1,2,3,4,5-pentamethylcyclopentadiene. Org. Synth. 65, (1987).
  29. Koelle, U., Kossakowski, J. Di-µ-chloro-bis[(η5-pentachlororuthenium(III)], [Cp*RuCl2]2 and Di-µ-methoxo-bis(η5-pentamethylcyclomethylcyclopentadienyl) diruthenium(II), [Cp*RuOMe]2. Inorg. Synth. 29, 225-228 (1992).
  30. White, C., Yates, A., Maitlis, P. M. η5-pentamethylcyclopentadienyl)rhodium and -iridium compounds. Inorg. Synth. 29, 228-234 (1992).
  31. Andersen, R. A., Blom, R., Boncella, J. M., Burns, C. J., Volden, H. V. The thermal average molecular structures of bis(pentamethylcyclopentadienyl)magnesium(II), -calcium(II), and -ytterbium(II) in the gas phase. Acta Chem. Scand. 41A, 24-35 (1987).
  32. Gross, J. H., et al. Liquid injection field desorption/ionization of reactive transition metal complexes. Anal. Bioanal. Chem. 386 (1), 52-58 (2006).
check_url/it/55366?article_type=t

Play Video

Citazione di questo articolo
Call, Z., Suchewski, M., Bradley, C. A. Accessing Valuable Ligand Supports for Transition Metals: A Modified, Intermediate Scale Preparation of 1,2,3,4,5-Pentamethylcyclopentadiene. J. Vis. Exp. (121), e55366, doi:10.3791/55366 (2017).

View Video