Summary

分析树突状形态的列和图层

Published: March 23, 2017
doi:

Summary

在这里,我们将展示如何分析列和层果蝇髓质神经元树突路由。该工作流包括一个双视图成像技术,以改善跟踪,登记树突乔木于基准列数组以及用于分析在三维空间中的树枝状结构的图像质量和计算工具。

Abstract

在中枢神经系统中,如苍蝇视叶和脊椎动物皮质许多地区,突触电路中的层和列组织发达的动物发展和信息处理中,以促进脑布线。突触后神经元精心树突在特定层的型特异性模式与适当的突触前末梢到突触。飞髓质神经毡是由10层到约750列;每一列是通过在38种髓质的神经元,配合部分7种类型的传入的在一个特定类型的方式终末其中树突支配。该报告详细介绍了程序,图像和分析延髓神经元树突。该工作流包括三个部分:(i)该双视图成像部分结合在正交取向成树突的高分辨率三维图像收集整理二共焦图像堆栈; (二)树突追踪和登记部分树突状痕迹在3D乔木和树突注册痕迹,参考列数组; (ⅲ)该树枝状分析部分分析的树突状图案相对于列和层,包括树突乔木层特定的终止和平面投影的方向,并导出树枝状分支和终止频率的估计。该协议利用建立在开源MIPAV(医学影像处理,分析和可视化)平台和自定义工具箱中的矩阵实验室语言自定义插件。总之,这些协议提供一个完整的工作流来分析层和列果蝇髓质神经元的树突的路由,以确定细胞类型,并确定在突变体的缺陷。

Introduction

在开发过程中,神经元在复杂的,但千篇一律的分支图案精致的树突形成与突触前伙伴突触。树突分枝模式相关与神经元的身份和功能。树突乔木的位置确定的,他们收到的突触前输入的类型,而树枝状分枝的复杂性和字段大小支配输入号码。因此,树突形态属性是突触连接和神经元计算的关键因素。在复杂的大脑,诸如苍蝇视叶和脊椎动物视网膜许多地区,突触电路中的列和层组织,以促进信息处理1,2。在这样的列和层的组织,一个独特的形态项目轴突突触前神经元在一个特定层(所谓的特定层的定位)终止,并形成一个有序的两维阵列(所谓的卡勒ð地形图),而突触后神经元延长特定层适当大小的树突接收到正确的类型和数量的突触前输入。而轴突靶向层和列已经得到很好的研究3,4,较少被知道关于树突如何路由到特定层和扩大适当大小感受域,以形成具有正确的突触前伙伴5突触连接。成像和量化树突靶向层和列的困难阻碍了柱状和夹层的大脑结构树突发育的研究。

果蝇神经髓质是研究在列和树突状层路由和电路组件的理想模型。苍蝇髓质神经纤维组织为10层的3D格与约750列。每列由一组传入,的p支配hotoreceptors R7 / R 8和薄层神经元L1 – L5,其终末形成层特定的方式6的地形图。约38种髓质的神经元存在于每髓质列和特定层和具有适当字段大小精细树突从这些传入7接收输入。在延髓的突触电路,在电子显微镜水平得到重建;因此,突触的伙伴关系已经非常成熟7,8。此外,用于标记各种类型髓质神经元的遗传工具可用9,10,11。通过检查三种transmedulla(Tm)为神经元(TM2,TM9和TM20),我们先前已经确定两种细胞类型特异性树突属性:(一)以旧换新神经元投射无论是在向前或向后方向树突(平面PROJ挠度方向),这取决于细胞类型和(ii)延髓神经元的树突终止于特定髓质层中的细胞类型特异性的方式(层特定的终端)12。平面投影方向和特定层的终止足以区分这三种类型的Tm的神经元,而扰乱的Tm反应层和列线索突变影响这些属性的不同的方面。

这里,我们提出用于检查果蝇髓质神经元的列和层( 图1)的树枝状图案形成一个完整的工作流程。首先,我们展示了双景成像方法,它采用定制的软件合并两个共焦图像叠加产生高品质的图像各向同性。此方法只需要常规共焦显微镜,以产生高质量的图像,其允许树枝状分枝的可靠跟踪,而不诉诸超分辨率显微镜,这样的小号STED(受激发射损耗)或结构照明。第二,我们提出了跟踪树突乔木和用于登记所得突起痕迹到参考列阵列的方法。第三,我们显示了用于推导估计树枝状分支和终止频率提取的平面投影方向和树突的特定层的终端信息,以及作为计算方法。总之,这些方法允许在3D,基于树枝状形态的细胞类型的分类树枝状型态的表征,和潜在缺陷的突变体的鉴定。

Protocol

注意:该协议包含三个部分:双视图成像(部分1 – 3),树突跟踪和登记(第4 – 6),和树突分析(第7 – 9)( 图1)。在材料/设备的表中提供的代码和示例文件。 1.双图像采集注意:此步骤是为了获得所关注的神经元的两个图像栈在两个正交(水平和额叶)取向。 制备该含有疏标记髓质神经元飞大脑(〜10个细胞/脑叶)?…

Representative Results

利用这里提出的双视图成像过程,含有疏标记TM20神经元蝇脑在两个正交的方向被成像。成像之前,将脑与用于可视化膜 – 拴系的GFP和感光体轴突适当初级和次级抗体染色。用于成像,大脑首次安装在水平方向( 图2A,B)。一个GFP标记TM20神经和周围感光体轴突使用共聚焦显微镜( 图3A)成像。大脑,然后重新对准( 图2A,B)和在正面…

Discussion

在这里,我们将展示如何图像和分析果蝇神经髓质树突乔木。第一部分,双视图成像,描述了去卷积和两个图像栈的组合成一个高分辨率的图像栈。第二部分,枝晶追踪和登记,介绍髓质神经元的参考列数组的树突的追查​​和登记。第三部分,树突状分析,介绍了使用自定义脚本来分析树突状图案。总之这些协议提供了一个完整的工作流中提取树突状模式的信息相对于图层和列,并确定?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作是由美国国立卫生研究院院内研究计划的支持,儿童健康和人类发展(授予HD008913到C-HL)的尤尼斯·肯尼迪·施莱佛国立研究所和信息技术中心(PGM,NP,ESM ,和MM)。

Materials

Software
Huygens Professional  Scientific Volume Imaging version 16.05 for image deconvolution (https://svi.nl).  commercial software
MIPAV version 7.3.0 for image recombination and registration (http://mipav.cit.nih.gov/.).  freeware
MIPAV plugin: PlugInDrosophilaRetinalRegistration.class freeware
MIPAV plugin: PlugInDrosophilaStandardColumnRegistration.class freeware
Imaris Bitplane for tracing neurites and assigning reference points for image registration (http://www.bitplane.com). commercial software
Vaa3D for visualizing swc files (https://github.com/Vaa3D/release/releases/).  freeware
Matlab Mathworks R2014b for morphometric analysis of dendrites (http://www.mathworks.com).  commercial software
Matlab toolbox: TREES1.14 v1.14 for analyzing dendritic morphometric parameters (http://www.treestoolbox.org/download.html).  freeware
Matlab toolbox: Dendritic_Tree_Toolbox v1.0 for calculating morphometric parameters (https://science.nichd.nih.gov/confluence/display/snc/Data+collections+for+imagines+combination+and+standardize+column+registration). Freeware
Name Company Catalog number Comments
Sample files
SWC file definition http://www.neuronland.org/NLMorphologyConverter/MorphologyFormats/SWC/Spec.html
The codes and sample files for image combination and registration https://science.nichd.nih.gov/confluence/display/snc/Data+collections+for+imagines+combination+and+standardize+column+registration
Reference point example  https://science.nichd.nih.gov/confluence/download/attachments/117216914/points.csv?version=1&modificationDate=1471880596000&api=v2
Name Company Catalog number Comments
Computer system
MS Windows Windows 7 x64 or Macintosh OS X 10.7 or later 3GHz 64-bit quad-core processor, 16G RAM (minimal)
Optional: Quadro4000  (or above) graphic card Nvidia for stereographic visualization of dendrites.
Optional: NVIDIA 3D vision2 Nvidia http://www.nvidia.com/object/3d-vision-main.html
Optional: 120 Hz LCD display for NVIDIA 3D vision2 http://www.nvidia.com/object/3d-vision-system-requirements.html
Name Company Catalog number Comments
Reagents for imaging
24B10 antibody The Developmental Studies Hybridoma Bank 24B10
GFP Tag Antibody Thermofisher Scientific G10362
Goat anti-Rabbit (H+L), Alexa Fluor 488 Thermofisher Scientific A11034
Goat anti-Mouse (H+L), Alexa Fluor 568 Thermofisher Scientific A21124
VECTASHIELD Antifade Mounting Medium Vector Laboratories H-1000
Mounting Clay  Fisher S04179
70% glycerol in 1X PBS
Cover glasses, high performance, D=0.17mm Zeiss 474030-9000-000

Riferimenti

  1. Kaas, J. H. Topographic maps are fundamental to sensory processing. Brain Res Bull. 44 (2), 107-112 (1997).
  2. Sanes, J. R., Zipursky, S. L. Design principles of insect and vertebrate visual systems. Neuron. 66 (1), 15-36 (2010).
  3. Huberman, A. D., Clandinin, T. R., Baier, H. Molecular and cellular mechanisms of lamina-specific axon targeting. CSH Perspect Biol. 2 (3), a001743 (2010).
  4. Clandinin, T. R., Feldheim, D. A. Making a visual map: mechanisms and molecules. Curr Opin Neurobiol. 19 (2), 174-180 (2009).
  5. Luo, J., McQueen, P. G., Shi, B., Lee, C. H., Ting, C. Y. Wiring dendrites in layers and columns. J Neurogenet. 30 (2), 69-79 (2016).
  6. Meinertzhagen, I. A., Hanson, T. E. . The development of the optic lobe. In The Development of Drosophila melanogaster. , 1363-1491 (1993).
  7. Takemura, S. Y., et al. A visual motion detection circuit suggested by Drosophila connectomics. Nature. 500 (7461), 175-181 (2013).
  8. Takemura, S. Y., et al. Synaptic circuits and their variations within different columns in the visual system of Drosophila. Proc Natl Acad Sci U S A. 112 (44), 13711-13716 (2015).
  9. Gao, S., et al. The neural substrate of spectral preference in Drosophila. Neuron. 60 (2), 328-342 (2008).
  10. Karuppudurai, T., et al. A hard-wired glutamatergic circuit pools and relays UV signals to mediate spectral preference in Drosophila. Neuron. 81 (3), 603-615 (2014).
  11. Strother, J. A., Nern, A., Reiser, M. B. Direct observation of ON and OFF pathways in the Drosophila visual system. Curr Biol. 24 (9), 976-983 (2014).
  12. Ting, C. Y., et al. Photoreceptor-derived activin promotes dendritic termination and restricts the receptive fields of first-order interneurons in Drosophila. Neuron. 81 (4), 830-846 (2014).
  13. Ting, C. Y., et al. Tiling of R7 axons in the Drosophila visual system is mediated both by transduction of an activin signal to the nucleus and by mutual repulsion. Neuron. 56 (5), 793-806 (2007).
  14. Peng, H., Ruan, Z., Long, F., Simpson, J. H., Myers, E. W. V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nat Biotechnol. 28 (4), 348-353 (2010).
  15. Takemura, S. Y., Lu, Z., Meinertzhagen, I. A. Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla. J Comp Neurol. 509 (5), 493-513 (2008).
  16. Takemura, S. Y., et al. Cholinergic circuits integrate neighboring visual signals in a Drosophila motion detection pathway. Curr Biol. 21 (24), 2077-2084 (2011).
  17. Keller, P. J., Schmidt, A. D., Wittbrodt, J., Stelzer, E. H. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science. 322 (5904), 1065-1069 (2008).
  18. Wu, Y., et al. Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy. Nat Biotechnol. 31 (11), 1032-1038 (2013).
  19. Popko, J., Fernandes, A., Brites, D., Lanier, L. M. Automated analysis of NeuronJ tracing data. Cytometry A. 75 (4), 371-376 (2009).
  20. Meijering, E., et al. Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry A. 58 (2), 167-176 (2004).
  21. Pool, M., Thiemann, J., Bar-Or, A., Fournier, A. E. NeuriteTracer: a novel ImageJ plugin for automated quantification of neurite outgrowth. J Neurosci Methods. 168 (1), 134-139 (2008).
  22. Scorcioni, R., Polavaram, S., Ascoli, G. A. L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nat Protoc. 3 (5), 866-876 (2008).
  23. Kaplan, E. L., Meier, P. Nonparametric Estimation from Incomplete Observations. JASA. 53, 457-481 (1958).
check_url/it/55410?article_type=t&slug=analyzing-dendritic-morphology-in-columns-and-layers

Play Video

Citazione di questo articolo
Ting, C., McQueen, P. G., Pandya, N., McCreedy, E. S., McAuliffe, M., Lee, C. Analyzing Dendritic Morphology in Columns and Layers. J. Vis. Exp. (121), e55410, doi:10.3791/55410 (2017).

View Video