Summary

使用微流体装置来衡量寿命和细胞表型单芽殖酵母细胞

Published: March 30, 2017
doi:

Summary

本文介绍用于生产微流体芯片和微流体实验的设置来测量的寿命和单个酵母细胞的细胞表型进行了优化的协议。

Abstract

Budding yeast Saccharomyces cerevisiae is an important model organism in aging research. Genetic studies have revealed many genes with conserved effects on the lifespan across species. However, the molecular causes of aging and death remain elusive. To gain a systematic understanding of the molecular mechanisms underlying yeast aging, we need high-throughput methods to measure lifespan and to quantify various cellular and molecular phenotypes in single cells. Previously, we developed microfluidic devices to track budding yeast mother cells throughout their lifespan while flushing away newborn daughter cells. This article presents a method for preparing microfluidic chips and for setting up microfluidic experiments. Multiple channels can be used to simultaneously track cells under different conditions or from different yeast strains. A typical setup can track hundreds of cells per channel and allow for high-resolution microscope imaging throughout the lifespan of the cells. Our method also allows detailed characterization of the lifespan, molecular markers, cell morphology, and the cell cycle dynamics of single cells. In addition, our microfluidic device is able to trap a significant amount of fresh mother cells that can be identified by downstream image analysis, making it possible to measure the lifespan with higher accuracy.

Introduction

芽殖酵母是衰老研究了强大的模式生物。然而,在酵母的常规寿命测定依赖于显微切割,这不仅是劳动密集,而且低吞吐量1,2。此外,他们的年龄在传统的显微方法不提供在单一母细胞的各种细胞和分子特征的详细视图。微流体装置的发展已使自动程序以测量酵母寿命以及跟随的分子标记和各种细胞表型在整个母细胞3,4,5,6,7,8的寿命。后的酵母细胞被加载到微流控装置,它们可以在显微镜下使用自动时间圈跟踪È成像。随着成像处理工具的帮助下,各种细胞和分子的表型可以被提取3,6,8,包括寿命,大小,荧光报道,细胞形态,细胞周期动力学, ,其中许多是难以或不可能获得使用传统的显微解剖法。因为他们的成功发展了几年前3,4,6,7的微流体装置已经获得了在酵母衰老研究突出。一些研究小组已经随后发表在早期的设计5的变化,许多酵母实验室已经采用微流体装置作为研究对象。

在细胞培养进行指数增长,可用于观测岁母细胞的数量是miniscu乐。因此,微流体装置的寿命测量一般设计原则是保留母细胞,并删除子细胞。一个这样的设计使得使用酵母进行不对称细胞分裂的事实。在该装置将捕获更大母细胞的结构和更小的允许子细胞被冲走。这篇文章中描述的微流体芯片采用了软聚二甲基硅氧烷(PDMS)垫(垂直悬挂列)以捕获母细胞( 图1)。类似的设计的设备先前已被3,4,6,7的报道。该协议使用一个简单的程序来制造微流体装置和被用于延时成像实验优化的直接的细胞装载方法。一个在微流体装置的关键参数是用于捕获母细胞的PDMS焊盘的宽度。我们ðevice使用更宽垫,可以让更多的母细胞各垫下,包括可以在整个他们的寿命进行跟踪新鲜母细胞的显著部分。除了寿命测量,当细胞需要跟踪许多代或当在整个寿命的观察是必要这个协议是用于单细胞延时成像实验是有用的。

Protocol

1.硅片模具制造注:光掩膜的设计与AutoCAD软件和商业公司制造的。这种设计包含不同的图案(三层补充文件1 )。第一,第二,和第三层的高度分别为大约4微米,10微米和50微米。硅晶片模具从使用软光刻9,10光掩模创建。 在200℃下烘烤的硅晶片10分钟,以蒸发水蒸汽…

Representative Results

实验后,将细胞和许多细胞和分子表型的寿命可以从所记录的时间推移的图像被提取。由于有许多可从每个细胞中提取不同的特征,分析的第一步是将注释细胞和事件,包括位置和小区的边界和正被跟踪的各种事件的定时,例如作为萌芽事件。这些注释将使它更容易返回到相同的一组细胞并分析不同的特点,在未来。使用图像分析软件,如ImageJ的11和相?…

Discussion

PDMS的设备需要新鲜的。否则,引起的插入管插入装置的空气气泡将难以去除。步骤3.4是重要通过浓缩细胞提高电池装载效率。为了增加实验的吞吐量,连接到同一个PDMS芯片上4至6个模块来独立地操作泵通常用于执行4至6个不同的实验(不同菌株或介质的组合物)同时进行。

相比于常规的酵母复制型老化试验(使用显微解剖),这里提出的微流体方法不太费力和耗时的。此外?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This research was supported by NIH Grant AG043080 and the National Natural Science Foundation of China (NSFC), No. 11434001. We thank Lucas Waldburger for proofreading the manuscript.

Materials

3'' <111> silicon wafer Addison Engineering
SU-8 2000 and 3000 Series MicroChem
SYLGARD® 184 SILICONE ELASTOMER KIT ellsworth 2065622 Include Sylgard® silicone elastomer base and curing agent
Petri dishes VWR 391-1502
Harris Uni-core™ punch(I.D. 0.75 mm) Sigma-Aldrich 29002513
24 mm x 40 mm SLIP-RITE® cover glass Thermo Fisher Scientific 102440
3M  Scotch Tape ULINE S-10223
VWR® Razor Blades VWR 55411-050
PURE ETHANOL, KOPTEC VWR 64-17-5
WHOOSH-DUSTER™ VWR 16650-027
5mL BD Syringe (Luer-Lock™Tip) Becton, Dickinson and Company. 309646
PTFE Standard Wall Tubing (100ft, AWG Size:22, Nominal ID: 0.028) COMPONENT SUPPLY COMPANY SWTT-22
Needle Assortment COMPONENT SUPPLY COMPANY NEKIT-1
Desiccator HACH 2238300
Lab Oven FISHER SCIENTIFIC 13246516GAQ
Nikon TE2000 microscope with 40x and 60x objective Nikon
Zeiss Axio Observer Z1 with 40x and 60x objective Zeiss
Syringe Pump Longerpump TS-1B

Riferimenti

  1. Mortimer, R. K., Johnston, J. R. Life span of individual yeast cells. Nature. 183 (4677), 1751-1752 (1959).
  2. Polymenis, M., Kennedy, B. K. Cell biology: High-tech yeast ageing. Nature. 486 (7401), 37-38 (2012).
  3. Xie, Z., et al. Molecular phenotyping of aging in single yeast cells using a novel microfluidic device. Aging Cell. 11 (4), 599-606 (2012).
  4. Zhang, Y., et al. Single cell analysis of yeast replicative aging using a new generation of microfluidic device. PLoS One. 7 (11), e48275 (2012).
  5. Chen, K. L., Crane, M. M., Kaeberlein, M. Microfluidic technologies for yeast replicative lifespan studies. Mech Ageing Dev. , (2016).
  6. Lee, S. S., Avalos Vizcarra, ., Huberts, I., H, D., Lee, L. P., Heinemann, M. Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform. Proc Natl Acad Sci U S A. 109 (13), 4916-4920 (2012).
  7. Huberts, D. H., Janssens, G. E., Lee, S. S., Vizcarra, I. A., Heinemann, M. Continuous high-resolution microscopic observation of replicative aging in budding yeast. J Vis Exp. (78), e50143 (2013).
  8. Jo, M. C., Liu, W., Gu, L., Dang, W., Qin, L. High-throughput analysis of yeast replicative aging using a microfluidic system. Proc Natl Acad Sci U S A. 112 (30), 9364-9369 (2015).
  9. Mata, A., Fleischman, A. J., Roy, S. Fabrication of multi-layer SU-8 microstructures. Journal of Micromechanics and Microengineering. 16 (2), 276-284 (2006).
  10. Xia, Y. N., Whitesides, G. M. Soft lithography. Angewandte Chemie-International Edition. 37 (5), 550-575 (1998).
  11. Schneider, C. A., Rasband, W. S., Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 9 (7), 671-675 (2012).
  12. Xie, Z., et al. Early telomerase inactivation accelerates aging independently of telomere length. Cell. 160 (5), 928-939 (2015).
  13. Boy-Marcotte, E., et al. The heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons. Mol Microbiol. 33 (2), 274-283 (1999).
  14. Yang, X., Lau, K. Y., Sevim, V., Tang, C. Design principles of the yeast G1/S switch. PLoS Biol. 11 (10), e1001673 (2013).
check_url/it/55412?article_type=t

Play Video

Citazione di questo articolo
Zou, K., Ren, D. S., Ou-yang, Q., Li, H., Zheng, J. Using Microfluidic Devices to Measure Lifespan and Cellular Phenotypes in Single Budding Yeast Cells. J. Vis. Exp. (121), e55412, doi:10.3791/55412 (2017).

View Video