Summary

ハイコンテンツ顕微鏡を用いた細胞レドックスプロファイリング

Published: May 14, 2017
doi:

Summary

この論文は、細胞透過性蛍光レポーター分子5-(および – )を使用して、生存接着細胞において、細胞内ROSレベル、ならびにミトコンドリア膜電位および形態(ミトコンドリア形態機能とも併せて参照される)の同時定量化のための、 6) – クロロメチル-2 '、7'-ジクロロジヒドロフルオレセインジアセテート、アセチルエステル(CM-H 2 DCFDA)およびテトラメチルローダミンメチルエステル(TMRM)。

Abstract

反応性酸素種(ROS)は、遺伝子発現、移動、分化および増殖を含む必須の細胞プロセスを調節する。しかしながら、過剰なROSレベルは、酸化ストレスの状態を誘導し、DNA、脂質およびタンパク質に対する不可逆的な酸化的損傷を伴う。したがって、ROSの定量化は、細胞の健康状態の直接プロキシミティを提供する。ミトコンドリアはROSの主要な細胞供給源および標的の1つであるため、同じ細胞におけるミトコンドリア機能とROS産生の共同分析は、病態生理学的条件における相互接続の理解を深める上で極めて重要です。したがって、細胞内ROSレベル、ミトコンドリア膜電位(ΔΨm)およびミトコンドリア形態の同時定量のために、高含量顕微鏡法に基づく戦略が開発された。これは、自動化された広視野蛍光顕微鏡法およびマルチウエルプレートで増殖させた生着細胞の画像解析および染色dを、細胞透過性蛍光レポーター分子CM-H 2 DCFDA(ROS)およびTMRM(ΔΨmおよびミトコンドリア形態)と比較した。蛍光測定法またはフローサイトメトリーとは対照的に、この戦略は、実験刺激の前後の両方で、時空間分解能の高い個々の細胞のレベルでの細胞内パラメータの定量化を可能にする。重要なことに、この方法の画像ベースの性質は、信号強度に加えて形態学的パラメータを抽出することを可能にする。組合せ特徴セットは、亜集団、細胞タイプおよび/または処置間の差異を検出するための探索的および統計的多変量データ分析に使用される。ここでは、アッセイの詳細な説明を、化学摂動後の細胞状態間の明白な識別の可能性を証明する実験例と共に提供する。

Introduction

細胞内ROSの濃度は、ROS生成系とROS解離系との間の動的相互作用によってきめ細かく調節される。両者の間の不均衡が酸化ストレスの状態を引き起こす。 ROSの主要な供給源には、ミトコンドリア1がある。細胞内呼吸での役割を考えると、細胞内スーパーオキシド(O 2 ・ – )分子の大部分を担っている2 。これは、主に強い負の内部ミトコンドリア膜電位(Δψm)、 すなわちミトコンドリア過分極の条件下での電子輸送鎖の複合体1でのO 2への電子漏出に起因する。他方、ミトコンドリアの脱分極は、複数の作用様式を指し示すROS産生の増加と相関している> 6,7,8。さらに、核分裂融合機構のタンパク質のレドックス修飾によって、ROSはミトコンドリア形態を共調節する9。例えば、断片化は、ROS産生およびアポトーシスの増加と相関する10,11。繊維状ミトコンドリアは栄養飢餓および防御に関連しているミトファジー12 。細胞のROSとミトコンドリアの形態機能との複雑な関係を考えると、両者は理想的には生存細胞中で同時に定量されるべきである。これを正確に行うために、蛍光プローブCM-H 2 DCFDA(ROS)およびTMRM(ミトコンドリアΔΨmおよび形態学)で染色された付着細胞培養の自動化された広視野顕微鏡法および画像分析に基づいて、高含量画像アッセイを開発した。高含量イメージングとは、sp複数の相補的マーカーおよび自動画像解析を用いた細胞表現型に関する非同時期に豊富な( すなわち 、多数の記述的特徴)情報。自動顕微鏡検査と組み合わせると、多くの試料を並行してスクリーニングすることができ( すなわちハイスループット)、アッセイの統計力を高めることができます。実際、プロトコルの主な資産は、同一細胞内の複数のパラメータの同時定量化が可能であり、これは多数の細胞および条件についての定量化を可能にすることである。

プロトコルは8つの部分に分かれています(以下のプロトコールで詳細に説明されています)。1)96穴プレートに細胞を播種する。 2)ストック溶液、作業溶液およびイメージングバッファーの調製; 3)顕微鏡のセットアップ。 4)細胞にCM-H 2 DCFDAおよびTMRMを負荷する。 5)基礎的なROSレベルおよびミトコンドリアの形態機能を測定するための最初のライブイメージングラウンド; 6) tert-ブチルの添加後のラウンド2回目のイメージング誘導されたROSレベルを測定するための過酸化物(TBHP) 7)自動画像解析。 8)データ分析、品質管理、視覚化。

このアッセイは、もともとは正常ヒト真皮線維芽細胞(NHDF)のために開発されたものである。これらの細胞は大きく平らであるため、2Dワイドフィールド画像13,14におけるミトコンドリアの形態を評価するのに適しています。しかしながら、わずかな改変を加えれば、この方法は他の接着細胞タイプにも適用可能である。さらに、CM-H 2 DCFDAとTMRMの組み合わせの次に、ワークフローは、異なる分子特異性1,15を有する様々な蛍光色素対に準拠する。

Protocol

以下のプロトコールは、NHDF細胞について、および材料ファイルで指定されたマルチウェルプレートを使用して実施されるものとして記載されている。ワークフローの概要については、 図1を参照してください。 1.試薬の調製 10%v / vウシ胎仔血清(FBS)および100IU / mLペニシリンおよび100IU / mLストレプトマイシン(PS)を含むダルベッコ改変?…

Representative Results

アッセイはいくつかの対照実験を用いてベンチマークされており、その結果はSieprath et al。 1 。要するに、CM-H 2 DCFDAおよびTMRMの細胞内ROSおよびΔψmの外から誘導された変化に対する蛍光応答を定量化して、ダイナミックレンジを決定した。 CM-H 2 DCFDAについて、NHDFは、10μM〜160μMの範囲のTBHPの濃度を増加させて処理した場合、?…

Discussion

本稿では、NHDFにおける細胞内ROSレベルとミトコンドリア機能の同時定量化のための高含量顕微鏡法について述べる。その性能は、SQV処理NHDFに関する事例研究によって実証された。この結果は、19,20,21,22,23,24,25の別個の実験ではあるが、1型HIVプロテアーゼ阻害剤による治療後に、ROSレベルまたはミトコンドリア機能障害の増加が観察された文献からの以前の証拠を裏付けている。重要な違い?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This research was supported by the University of Antwerp (TTBOF/29267, TTBOF/30112), the Special Research Fund of Ghent University (project BOF/11267/09), NB-Photonics (Project code 01-MR0110) and the CSBR (Centers for Systems Biology Research) initiative from the Netherlands Organization for Scientific Research (NWO; No: CSBR09/013V). Parts of this manuscript have been adapted from another publication1, with permission of Springer. The authors thank Geert Meesen for his help with the widefield microscope.

Materials

Reagents
Tetramethylrhodamine, Methyl Ester, Perchlorate (TMRM) ThermoFisher Scientific T668
CM-H2DCFDA (General Oxidative Stress Indicator) ThermoFisher Scientific C6827
Dimethyl sulfoxide Sigma)Aldrich D8418
MatriPlate 96-Well Glass Bottom MicroWell Plate 630 µL-Black 0.17 mm Low Glass Lidded Brooks life science systems MGB096-1-2-LG-L
HBSS w/o Phenol Red 500 ml Lonza BE10-527F
DMEM high glucose with L-glutamine Lonza BE12-604F
Phosphate Bufered Saline (PBS) w/o Ca and Mg Lonza BE17-516F
HEPES 1M 500mL Lonza 17-737F
Trypsin-Versene (EDTA) Solution Lonza BE17-161E
Cy3 AffiniPure F(ab')₂ Fragment Donkey Anti-Rabbit IgG (H+L) Jackson 711-166-152 Antibody used for acquiring flat-field image
Alexa Fluor 488 AffiniPure F(ab')₂ Fragment Donkey Anti-Rabbit IgG (H+L) Jackson 711-546-152 Antibody used for acquiring flat-field image
Name Company Catalog Number Comments
Equipment
Nikon Ti eclipse widefield microscope Nikon
Perfect Focus System (PFS) Nikon hardware-based autofocus system
CFI Plan Apo Lambda 20x objective Nikon
Name Company Catalog Number Comments
Software
NIS Elelements Advanced Research 4.5 with JOBS module Nikon This software is used to steer the microscope and program/perform the automatic image acquisition prototocol
ImageJ (FIJI) Version 2.0.0-rc-43/1.50g
RStudio Version 1.0.44 Rstudio
R version 3.3.2

Riferimenti

  1. Sieprath, T., Corne, T. D. J., Willems, P. H. G. M., Koopman, W. J. H., De Vos, W. H. Integrated High-Content Quantification of Intracellular ROS Levels and Mitochondrial Morphofunction. AAEC. 219, 149-177 (2016).
  2. Marchi, S., et al. Mitochondria-ros crosstalk in the control of cell death and aging). J Signal Transduct. 2012, 1-17 (2012).
  3. Korshunov, S. S., Skulachev, V. P., Starkov, A. A. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS lett. 416 (1), 15-18 (1997).
  4. Miwa, S., Brand, M. D. Mitochondrial matrix reactive oxygen species production is very sensitive to mild uncoupling. Biochem Soc Trans. 31 (Pt 6), 1300-1301 (2003).
  5. Verkaart, S., et al. Superoxide production is inversely related to complex I activity in inherited complex I deficiency. BBA-GEN SUBJECTS. 1772 (3), 373-381 (2007).
  6. Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem J. 417 (pt 1), 1-13 (2009).
  7. Lebiedzinska, M., et al. Oxidative stress-dependent p66Shc phosphorylation in skin fibroblasts of children with mitochondrial disorders. BBA-GEN SUBJECTS. 1797 (6-7), 952-960 (2010).
  8. Forkink, M., et al. Mitochondrial hyperpolarization during chronic complex I inhibition is sustained by low activity of complex II, III, IV and V. BBA-BIOENERGETICS. 1837 (8), 1247-1256 (2014).
  9. Willems, P. H. G. M., Rossignol, R., Dieteren, C. E. J., Murphy, M. P., Koopman, W. J. H. Redox Homeostasis and Mitochondrial Dynamics. Cell Metab. 22 (2), 207-218 (2015).
  10. Koopman, W. J. H., et al. Human NADH:ubiquinone oxidoreductase deficiency: radical changes in mitochondrial morphology?. Am J Physiol Cell Physiol. 293 (1), C22-C29 (2007).
  11. Archer, S. L. Mitochondrial dynamics–mitochondrial fission and fusion in human diseases. N Engl J Med. 369 (23), 2236-2251 (2013).
  12. Rambold, A. S., Kostelecky, B., Elia, N., Lippincott-Schwartz, J. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci U S A. 108 (25), 10190-10195 (2011).
  13. Koopman, W. J. H., et al. Simultaneous quantification of oxidative stress and cell spreading using 5-(and-6)-chloromethyl-2 ",7 -"dichlorofluorescein. Cytometry A. 69A (12), 1184-1192 (2006).
  14. Iannetti, E. F., Smeitink, J. A. M., Beyrath, J., Willems, P. H. G. M., Koopman, W. J. H. Multiplexed high-content analysis of mitochondrial morphofunction using live-cell microscopy. Nat Protoc. 11 (9), 1693-1710 (2016).
  15. Sieprath, T., et al. Sustained accumulation of prelamin A and depletion of lamin A/C both cause oxidative stress and mitochondrial dysfunction but induce different cell fates. Nucleus. 6 (3), 236-246 (2015).
  16. Zuiderveld, K. Contrast limited adaptive histogram equalization. Graphics gems IV. , 474-485 (1994).
  17. Chang, W., Cheng, J., Allaire, J. J., Xie, Y., McPherson, J. . shiny: Web Application Framework for R. R package version 0.14.2. , (2017).
  18. Konietschke, F., Placzek, M., Schaarschmidt, F., Hothorn, L. A. nparcomp: An R Software Package for Nonparametric Multiple Comparisons and Simultaneous Confidence Intervals. J Stat Softw. 64 (9), 1-17 (2015).
  19. Estaquier, J., et al. Effects of antiretroviral drugs on human immunodeficiency virus type 1-induced CD4(+) T-cell death. J Virol. 76 (12), 5966-5973 (2002).
  20. Matarrese, P., et al. Mitochondrial membrane hyperpolarization hijacks activated T lymphocytes toward the apoptotic-prone phenotype: homeostatic mechanisms of HIV protease inhibitors. J Immunol. 170 (12), 6006-6015 (2003).
  21. Roumier, T., et al. HIV-1 protease inhibitors and cytomegalovirus vMIA induce mitochondrial fragmentation without triggering apoptosis. Cell Death Differ. 13 (2), 348-351 (2006).
  22. Chandra, S., Mondal, D., Agrawal, K. C. HIV-1 protease inhibitor induced oxidative stress suppresses glucose stimulated insulin release: protection with thymoquinone. Exp Biol Med (Maywood). 234 (4), 442-453 (2009).
  23. Touzet, O., Philips, A. Resveratrol protects against protease inhibitor-induced reactive oxygen species production, reticulum stress and lipid raft perturbation. AIDS. 24 (10), 1437-1447 (2010).
  24. Bociąga-Jasik, M., et al. Metabolic effects of the HIV protease inhibitor–saquinavir in differentiating human preadipocytes. Pharmacol Rep. 65 (4), 937-950 (2013).
  25. Xiang, T., Du, L., Pham, P., Zhu, B., Jiang, S. Nelfinavir, an HIV protease inhibitor, induces apoptosis and cell cycle arrest in human cervical cancer cells via the ROS-dependent mitochondrial pathway. Cancer Lett. 364 (1), 79-88 (2015).
  26. Blanchet, L., Smeitink, J. A. M., et al. Quantifying small molecule phenotypic effects using mitochondrial morpho-functional fingerprinting and machine learning. Sci. Rep. 5, 8035 (2015).
  27. . Reactive Oxygen Species (ROS) Detection Reagents Available from: https://tools.lifetechnologies.com/content/sfs/manuals/mp36103.pdf (2006)
  28. Koh, C. M. Preparation of cells for microscopy using cytospin. Methods Enzymol. 533, 235-240 (2013).
  29. Mihara, K., Nakayama, T., Saitoh, H. A Convenient Technique to Fix Suspension Cells on a Coverslip for Microscopy. Curr Protoc Cell Biol. 68, 4.30.1-4.30.10 (2015).
  30. Deutsch, M., Deutsch, A., et al. A novel miniature cell retainer for correlative high-content analysis of individual untethered non-adherent cells. Lab Chip. 6 (8), 995-996 (2006).
  31. Price, H. P., MacLean, L., Marrison, J., O’Toole, P. J., Smith, D. F. Validation of a new method for immobilising kinetoplastid parasites for live cell imaging. Mol Biochem Parasitol. 169 (1), 66-69 (2010).
  32. Sabati, T., Galmidi, B. S., Korngreen, A., Zurgil, N., Deutsch, M. Real-time monitoring of changes in plasma membrane potential via imaging of fluorescence resonance energy transfer at individual cell resolution in suspension. JBO. 18 (12), (2013).
  33. Fercher, A., O’Riordan, T. C., Zhdanov, A. V., Dmitriev, R. I., Papkovsky, D. B. Imaging of cellular oxygen and analysis of metabolic responses of mammalian cells. Meth Mol Biol. 591 (Chapter 16), 257-273 (2010).
  34. Graf, R., Rietdorf, J., Zimmermann, T. Live cell spinning disk microscopy. Adv. Biochem. Eng. Biotechnol. 95 (Chapter 3), 57-75 (2005).
  35. Gao, L., Shao, L., Chen, B. C., Betzig, E. 3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy. Nat. Protoc. 9 (5), 1083-1101 (2014).
  36. Meijer, M., Hendriks, H. S., Heusinkveld, H. J., Langeveld, W. T., Westerink, R. H. S. Comparison of plate reader-based methods with fluorescence microscopy for measurements of intracellular calcium levels for the assessment of in vitro neurotoxicity. Neurotoxicology. 45, 31-37 (2014).
  37. Bushway, P. J., Mercola, M., Price, J. H. A comparative analysis of standard microtiter plate reading versus imaging in cellular assays. Assay and drug development technologies. 6 (4), 557-567 (2008).
  38. Black, C. B., Duensing, T. D., Trinkle, L. S., Dunlay, R. T. Cell-Based Screening Using High-Throughput Flow Cytometry. Assay Drug Dev Technol. 9 (1), 13-20 (2011).
check_url/it/55449?article_type=t

Play Video

Citazione di questo articolo
Sieprath, T., Corne, T., Robijns, J., Koopman, W. J. H., De Vos, W. H. Cellular Redox Profiling Using High-content Microscopy. J. Vis. Exp. (123), e55449, doi:10.3791/55449 (2017).

View Video