Summary

LERLIC-MS / MS进行深入表征和谷氨酰胺的定量和天冬酰胺脱酰胺在鸟枪蛋白质组学

Published: April 09, 2017
doi:

Summary

这里,我们提出的长条静电排斥亲水相互作用色谱 – 串联质谱(LERLIC-MS / MS)的方法的一个步骤一步协议。这是一种新的方法,使通过鸟枪蛋白质组学的谷氨酰胺和天冬酰胺脱酰胺亚型的第一次定量和定性。

Abstract

蛋白质脱酰胺化的表征是势在必行破译在人体病理学和其他生化上下文该蛋白的翻译后修饰(PTM)的作用(S)和潜力。为了进行蛋白质脱酰胺的表征,我们最近开发了一种新型长条静电排斥亲水性相互作用色谱 – 串联质谱(LERLIC-MS / MS)方法,其可以分离谷氨酰胺(Gln)和天冬酰胺(ASN)同种型脱酰胺的产物从模型化合物到高度复杂的生物样品。 LERLIC-MS / MS,因此,第一鸟枪蛋白质组学策略的Gln脱酰胺同种型的分离和定量。我们还证明,作为新颖性,在这里列出的样品处理方案稳定琥珀酰亚胺中间体允许由LERLIC-MS / MS表征。如图所示这个视频文章中LERLIC-MS / MS的应用可以帮助阐明目前不明蛋白质脱酰胺的n个分子阵列。此外,LERLIC-MS / MS提供了涵盖不同的生物学背景脱酰胺酶反应的进一步理解。

Introduction

脱酰胺是一种蛋白质翻译后修饰(PTM),通过天冬酰胺(ASN)和/或谷氨酰胺(Gln)残基1的变形例引入了一个负电荷的蛋白质骨架。 1比2:此修改而影响的Asn残基处的共同3生成异构产物异天冬氨酸(异Asp)和 -天冬氨酸(ASP)。尽管如此,该比率可以通过修复酶L-isoaspartyl甲基(PIMT)3,4的干预而改变。类似地,谷氨酰胺残基的脱酰胺化,生成以预期1异构γ-谷氨酸(γ-Glu),并且的α-谷氨酸亚型(α-GLU):7的比例3,5,但此比例可通过的作用而移普遍存在的酶的转谷氨酰胺酶2和其它转谷氨酰胺酶,转谷氨酰胺酶包括1,一个电子nzyme最近被确定为与大脑中的6外囊泡。

脱酰胺的起源可以是自发的或酶促的,前者是特别常见的谷氨酰胺残基,其中的转谷氨酰胺酶和其它酶通过转酰氨调解帧间/分子内交联(参见第3对谷氨酰胺酰氨进一步细节及其含义在几种慢性和致命人类疾病)。因此,脱酰胺是具有在所述结构上的一个关键反响和功能的影响分子4,7,8,并且需要进行了深入的化学表征3中的其不同的生物化学后果的光包括其服务老化9的作为分子时钟PTM 。

虽然天冬酰胺残留的脱酰胺已相对充分表征通过自下而上鸟枪蛋白质组学1,10,谷氨酰胺残基的脱酰胺化仍然没有超出由基于电子的自由基碎片11模型化合物的具有挑战性的分析的合适表征方法。我们最近开发了一种新型一维鸟枪蛋白质组学策略(LERLIC-MS / MS)3,使在一次分析中从复杂生物样品和模型化合物谷氨酰胺和天冬酰胺脱酰胺同种型的分离。 LERLIC-MS / MS是基于使用的长长度(50厘米)离子交换柱(LAX)上静电排斥亲水性相互作用色谱(ERLIC)模式下工作的胰蛋白酶消化的肽的分离和耦合到串联质谱(LC- MS / MS)。这个新的分析策略已被用于表征和比较定量每个脱酰胺化残基在人脑组织中的程度F“> 3。然而,这里概述的协议将提供旨在研究蛋白质脱酰胺的特殊性在感兴趣的生化上下文LERLIC-MS / MS的视频成像。

道德守则

本协议的所有程序已通过在新加坡南洋理工大学的机构审查委员会,并根据该机构准则已执行。

Protocol

1.包装长的长度阴离子交换(LAX)毛细管柱 (注意:虽然LAX列可以在家里装,因为我们在这个协议描述,LAX列也可购得,见材料与试剂的表的其他细节)。 暂停50毫克弱阴离子交换包装材料的在3.5mL的包装缓冲器 ( 表1)以制备淤浆。 组装该毛细管柱(50厘米长 – 200微米内径(ID)管)的端部使用一个母对阴配合,一个套圈和阴?…

Representative Results

谷氨酰胺和天冬酰胺残基的脱酰胺化被认为在几种慢性和致命疾病14牵连退行性蛋白修饰(DPM)。已经证明,这种PTM可以预测的抗体和其他分子的半衰期和降解状态在人体内和相似的生物学背景1,15。蛋白质脱酰胺的意义,其实超越了生物医学的背景下,因此这种修改存在于不同的蛋白质组<sup…

Discussion

在该视频文章,我们提出LERLIC-MS / MS 3的步骤一步协议,一种方法来进行深入的表征和准确地确定蛋白质脱酰胺和涉及在此蛋白质修饰的酶过程的程度。 LERLIC-MS / MS是基于静电排斥亲水性相互作用色谱(ERLIC)27的原则下使用的长长度(50厘米)的LAX。使用长长度列,如在我们的研究3中所示,根据它们的等电点27 ERLIC的电位最大…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

,新加坡(-OF-NMRC IRG-0003-2016),和NTU-NHG老化研究资助的国家医学研究理事会(:这项工作是在部分地由教育的新加坡教育部(授予ARC9 / 15级2)资助项目格兰特ARG / 14017)。我们想表达我们的感谢和最诚挚的感谢安德鲁·阿尔珀特博士和PolyLC团队亲切与成为可能这项研究包装材料提供给我们。

Materials

PolyCAT 3µm 100-Å (bulk material) PolyLC Inc. Special order
Long-length ion exchange capillary column 50 cm – 200 µm ID PolyLC Inc. Special order
PEEKsil Tubing 1/16" OD x 200 µm ID x 50 cm length SGE Analytical Science under Trajan Scientific Australia  620050
Female-to-female fitting for 1/16" OD tubbing Upchurch Scientific UPCHF-125
Female nut for microferule Upchurch Scientific UPCHP-416
Microferule Upchurch Scientific UPCHF-132
Pressure Bomb NanoBaume Western Fluids Engineering SP-400
Shimadzu Prominence UFLC system Shimadzu Prominence UFLC
Bullet Blender Next Advance BBX24
Safe-lock tubes Eppendorf  T9661-1000EA
Stainless steel beads. 0.9 – 2.0 mm. 1 lb. Non-sterile. Next Advance SSB14B
Table-top centrifuge  Hettich Zentrifugen Rotina 380 R
Standard Digital Heated Circulating Bath, 120VAC PolyScience 8006 6L 8006A11B
Sep-pack c18 desalting cartridge 50 mg Waters WAT020805
Vacumm concentrator Eppendorf  Concentrator Plus System
Dionex UltiMate 3000 UHPLC  Dionex UltiMate 3000 UHPLC 
Orbitrap Elite mass spectrometer Thermo Fisher Scientific Inc. ORBITRAP ELITE
Michrom Thermo CaptiveSpray  Michrom-Bruker Inc. TCSI-SS2
Incubator INCUCELL  MMM Group INCUCELL111
Sequencing-grade modified trypsin Promega V5111
Protease inhibitor cocktail tablets Roche 11836170001 (ROCHE)
Phosphate buffer solution 10X (diluted to 1x) Sigma-Aldrich P5493
Ammonium acetate Sigma-Aldrich A1542
Sodium deoxycholate Sigma-Aldrich D6750
Dithiothreitol Sigma-Aldrich D0632
Iodoacetamide Sigma-Aldrich i6125
Formic acid Sigma-Aldrich F0507 (HONEYWELL)
Ammonium hydroxide Sigma-Aldrich 338818 (HONEYWELL)
Acetonitrile HPLC grade Sigma-Aldrich 675415
Isopropanol HPLC grade Sigma-Aldrich 675431
Water HPLC grade Sigma-Aldrich 14263

Riferimenti

  1. Hao, P., Adav, S. S., Gallart-Palau, X., Sze, S. K. Recent advances in mass spectrometric analysis of protein deamidation. Mass Spectrom Rev. , (2016).
  2. Geiger, T., Clarke, S. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J Biol Chem. 262 (2), 785-794 (1987).
  3. Serra, A., Gallart-Palau, X., Wei, J., Sze, S. K. Characterization of Glutamine Deamidation by Long-Length Electrostatic Repulsion-Hydrophilic Interaction Chromatography-Tandem Mass Spectrometry (LERLIC-MS/MS) in Shotgun Proteomics. Anal Chem. , (2016).
  4. Reissner, K. J., Aswad, D. W. Deamidation and isoaspartate formation in proteins: unwanted alterations or surreptitious signals. Cell Mol Life Sci. 60 (7), 1281-1295 (2003).
  5. Capasso, S., Mazzarella, L., Sica, F., Zagari, A. First evidence of spontaneous deamidation of glutamine residue via cyclic imide to [small alpha]- and [gamma]-glutamic residue under physiological conditions. JChem Soc, Chem Commun. (23), 1667-1668 (1991).
  6. Gallart-Palau, X., Serra, A., Sze, S. K. Enrichment of extracellular vesicles from tissues of the central nervous system by PROSPR. Mol Neurodegener. 11 (1), 41 (2016).
  7. Gallart-Palau, X., et al. Gender differences in white matter pathology and mitochondrial dysfunction in Alzheimer’s disease with cerebrovascular disease. Mol Brain. 9, 27 (2016).
  8. Gallart-Palau, X., et al. Temporal lobe proteins implicated in synaptic failure exhibit differential expression and deamidation in vascular dementia. Neurochem Int. 80, 87-98 (2015).
  9. Robinson, N. E., Robinson, A. B. Molecular clocks. Proc Natl Acad Sci U.S.A. 98 (3), 944-949 (2001).
  10. Hao, P., et al. Enhanced separation and characterization of deamidated peptides with RP-ERLIC-based multidimensional chromatography coupled with tandem mass spectrometry. J Proteome Res. 11 (3), 1804-1811 (2012).
  11. Li, X., Lin, C., O’Connor, P. B. Glutamine deamidation: differentiation of glutamic acid and gamma-glutamic acid in peptides by electron capture dissociation. Anal Chem. 82 (9), 3606-3615 (2010).
  12. Smith, P. K., et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 150 (1), 76-85 (1985).
  13. Serra, A., et al. Plasma proteome coverage is increased by unique peptide recovery from sodium deoxycholate precipitate. Anal Bioanal Chem. , 1-11 (2016).
  14. Gallart-Palau, X., Serra, A., Sze, S. K. Uncovering Neurodegenerative Protein Modifications via Proteomic Profiling. Int Rev Neurobiol. 121, 87-116 (2015).
  15. Liu, Y. D., van Enk, J. Z., Flynn, G. C. Human antibody Fc deamidation in vivo. Biologicals. 37 (5), 313-322 (2009).
  16. Serra, A., et al. Commercial processed soy-based food product contains glycated and glycoxidated lunasin proteoforms. Sci Rep. 6, 26106 (2016).
  17. Serra, A., et al. A high-throughput peptidomic strategy to decipher the molecular diversity of cyclic cysteine-rich peptides. Sci Rep. 6, 23005 (2016).
  18. Leo, G., et al. Deamidation at asparagine and glutamine as a major modification upon deterioration/aging of proteinaceous binders in mural paintings. Anal Chem. 83 (6), 2056-2064 (2011).
  19. Wilson, J., van Doorn, N. L., Collins, M. J. Assessing the extent of bone degradation using glutamine deamidation in collagen. Anal Chem. 84 (21), 9041-9048 (2012).
  20. Buszewski, B., Noga, S. Hydrophilic interaction liquid chromatography (HILIC)–a powerful separation technique. Anal Bioanal Chem. 402 (1), 231-247 (2012).
  21. Alpert, A. J., Hudecz, O., Mechtler, K. Anion-exchange chromatography of phosphopeptides: weak anion exchange versus strong anion exchange and anion-exchange chromatography versus electrostatic repulsion-hydrophilic interaction chromatography. Anal Chem. 87 (9), 4704-4711 (2015).
  22. Adav, S. S., et al. Dementia-linked amyloidosis is associated with brain protein deamidation as revealed by proteomic profiling of human brain tissues. Mol Brain. 9 (1), 20 (2016).
  23. Golde, T. E., Borchelt, D. R., Giasson, B. I., Lewis, J. Thinking laterally about neurodegenerative proteinopathies. J Clin Invest. 123 (5), 1847-1855 (2013).
  24. Gallart-Palau, X., Ng, C. H., Ribera, J., Sze, S. K., Lim, K. L. Drosophila expressing human SOD1 successfully recapitulates mitochondrial phenotypic features of familial amyotrophic lateral sclerosis. Neurosci Lett. 624, 47-52 (2016).
  25. Ouellette, D., Chumsae, C., Clabbers, A., Radziejewski, C., Correia, I. Comparison of the in vitro and in vivo stability of a succinimide intermediate observed on a therapeutic IgG1 molecule. mAbs. 5 (3), 432-444 (2013).
  26. Kumar, S., et al. Unexpected functional implication of a stable succinimide in the structural stability of Methanocaldococcus jannaschii glutaminase. Nat Commun. 7, 12798 (2016).
  27. Alpert, A. J. Electrostatic Repulsion Hydrophilic Interaction Chromatography for Isocratic Separation of Charged Solutes and Selective Isolation of Phosphopeptides. Anal Chem. 80 (1), 62-76 (2008).
  28. Hao, P., Ren, Y., Alpert, A. J., Sze, S. K. Detection, Evaluation and Minimization of Nonenzymatic Deamidation in Proteomic Sample Preparation. Mol Cell Proteomics. 10 (10), 111 (2011).
  29. Hao, P., Ren, Y., Datta, A., Tam, J. P., Sze, S. K. Evaluation of the effect of trypsin digestion buffers on artificial deamidation. J Proteome Res. 14 (2), 1308-1314 (2015).
  30. Liu, S., Moulton, K. R., Auclair, J. R., Zhou, Z. S. Mildly acidic conditions eliminate deamidation artifact during proteolysis: digestion with endoprotease Glu-C at pH 4.5. Amino Acids. 48 (4), 1059-1067 (2016).
check_url/it/55626?article_type=t

Play Video

Citazione di questo articolo
Gallart-Palau, X., Serra, A., Sze, S. K. LERLIC-MS/MS for In-depth Characterization and Quantification of Glutamine and Asparagine Deamidation in Shotgun Proteomics. J. Vis. Exp. (122), e55626, doi:10.3791/55626 (2017).

View Video