Summary

小鼠学习记忆研究的新对象识别实验

Published: August 30, 2017
doi:

Summary

目标识别试验是评价小鼠学习记忆的一种简单有效的方法。方法如下所述。

Abstract

物体识别试验是对小鼠学习记忆各方面进行研究的一种常用的行为检测方法。该运动是相当简单, 可以完成超过3天: 习惯日, 训练日, 和测试日。在训练过程中, 允许鼠标探索2相同的对象。在测试日, 一个训练对象被一个新的对象替换。因为老鼠天生偏爱新奇, 如果老鼠认出了熟悉的物体, 它就会把大部分时间花在新奇的物体上。由于这种先天的偏好, 不需要积极或消极的强化或长期的训练计划。此外, 还可以对许多应用程序进行修改。保留间隔可以缩短以检查短期内存, 或延长以探测长期内存。药理干预可以在训练前、训练后的不同时间使用, 也可在召回前研究不同的学习阶段 (、习得、早或晚合并或召回)。总的来说, 这是一个相对低, 有效的测试记忆的小鼠, 并适合于检测神经心理学的变化后, 药理, 生物, 或基因的操纵。

Introduction

对象识别测试 (也称为新的对象识别测试) 是一种相对快速、高效的测试小鼠学习记忆不同阶段的方法。它最初被描述了 Ennaceur 并且德拉库尔在1988年和主要使用在大鼠1;然而, 自那时以来, 它已经成功地适应了使用在小鼠2,3,4,5,6,7。测试仅依赖于三会话: 一个适应会话、一个培训会话和一个测试会话。训练只涉及对两个相同对象的可视化探索, 而测试会话则需要用一个新的对象替换以前探索的对象之一。因为啮齿目动物天生偏爱新奇, 记忆熟悉对象的啮齿目动物将花费更多时间探索新的对象7,8,9

对其他啮齿动物记忆测试的主要好处是, 它依赖于啮齿动物的自然倾向, 探索新奇的8。因此, 不需要大量的训练课程或任何积极或消极的强化来激励行为。这意味着, 相对于其他测试101112131415, 它的压力大大降低, 并且需要显著运行时间比其他常用的内存测试更少, 如莫里斯水迷宫或巴恩斯迷宫, 两者都可能长达一周或更长。因此, 该方法的条件更接近于那些用于研究人类认知, 增加了对许多其他啮齿动物记忆测试的生态有效性的测试。同样, 因为它是一个简单的视觉召回任务, 它已经成功地适应了许多物种, 包括人类和非人灵长类的使用, 以评估声明性内存的不同间方面2,16 ,17。最后, 可以很容易地修改, 以检查不同阶段的学习和记忆 (, 获取, 整合, 或召回), 以评估不同类型的内存 (如如, 空间内存), 或评估不同的保留间隔 (, 短期vs长期内存)。

它的通用性为无数的研究应用提供了一个平台。研究可以利用药理学的药物来扰乱或增强记忆力。改变药物管理的时间在训练之前或之后, 或在测试之前可以提示在潜在的神经机制, 导致中断或增强内存6,18,19, 20. 以类似的方式, optogenetic 技术可以在这些相同的不同时间点上使用, 以观察有助于学习和记忆不同阶段的神经激活/抑制。它也适用于评估转基因动物、病变研究或神经退行性模型或衰老研究中的差异21,22,23,24,25,26,27,28. 训练和测试之间的时间 (称为保留间隔) 可以更改为对短期和长期内存26中的任何这些更改进行评估。最终, 该药物可以被用来作为一个工具, 研究药理, 遗传, 和神经学的变化, 以学习和记忆, 或这些工具可以用来研究的基础, 学习和记忆的支撑。

Protocol

在这里执行的所有程序都是由动物保育和使用委员会提交并批准的, 并按照 NIH 指南进行. 1. 对象选择和实验设置 选择不同的对象, 它们很容易被小鼠区分, 但具有类似的复杂程度 (纹理、形状、颜色图案和亮度, 等 )为了最小化可能导致结果偏差的任何潜在的对象偏好 (请参见 Ennaceur 2010 以了解对象选择 7 的全面描述). …

Representative Results

在图 2中显示了一个通用的实验性设置。在习惯日 (T0) 老鼠被安置在空的竞技场为 5 min. 二十四小时后, 老鼠被放回房间里, 有2相同的物体, 允许自由探索多达10分钟 (T1)。在测试日 (T2), 老鼠再被安置在竞技场, 但与一个熟悉的对象和一个新颖的对象, 并且允许探索为 10 min。保留间隔, T1 和 T2 之间的时间, 可以改变, 这取决于实验的最终目标。在有代表性…

Discussion

对小鼠学习记忆的研究是一种有效、灵活的方法。在设置实验时, 重要的是要考虑一些可能影响结果的变量。正如在代表性的结果中所讨论的, 小鼠的应变会影响勘探时间和保留间隔。勘探时间的减少可能歪曲或掩盖结果在绝对歧视分析2,3,5,30,32。某些品系的小鼠可能有较低?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

撰文人先前发表的工作得到了国家精神健康研究所 (MH088480) 的资助。作者想感谢她的前任导师 Dr. 在该项目中对他的支持。这份出版物得到了国家卫生研究院 (T32 DA007135) 的资助。

Materials

Open Field Box Panlab/Harvard Apparatus LE800SC Available in grey, white, or black
ANY-maze Stoelting Co. 60000 Behavior tracking system
EthoVisionXT 12 Noldus Behavior tracking system; requires 3 point tracking
Video Camera Any Video camera should be mounted directly overhead of the apparatus
70% Ethanol  Fisher Scientific BP2818-4 Prior to starting testing and in between trials, each object should be carefully cleaned. The floor and walls of the apparatus should also be cleaned. 

Riferimenti

  1. Ennaceur, A., Meliani, K. A new one-trial test for neurobiological studies of memory in rats III. Spatial vs. non-spatial working memory. Behav. Brain Res. 51 (1), 83-92 (1988).
  2. Akkerman, S., et al. Object recognition testing: methodological considerations on exploration and discrimination measures. Behav. Brain Res. 232 (2), 335-347 (2012).
  3. Antunes, M., Biala, G. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn. Process. 13 (2), 93-110 (2012).
  4. Leger, M., et al. Object recognition test in mice. Nat. Protoc. 8 (12), 2531-2537 (2013).
  5. van Goethem, N. P., et al. Object recognition testing: Rodent species, strains, housing conditions, and estrous cycle. Behav. Brain Res. 232 (2), 323-334 (2012).
  6. Lueptow, L. M., Zhang, C. -. G., O’Donnell, J. M. Cyclic GMP-mediated memory enhancement in the object recognition test by inhibitors of phosphodiesterase-2 in mice. Psychopharmacology (Berl). , (2015).
  7. Ennaceur, A. One-trial object recognition in rats and mice: Methodological and theoretical issues. Behav. Brain Res. 215 (2), 244-254 (2010).
  8. Berlyne, D. Novelty and curiosity as determinants of exploratory behavior. Br. J. Psychol. 41 (1-2), 68-80 (1950).
  9. Ennaceur, A., Delacour, J. A new one-trial test for neurobiological studies of memory in rats I. Behavioral-data. Behav. Brain Res. 31 (1), 47-59 (1988).
  10. Aguilar-Valles, A., et al. Analysis of the stress response in rats trained in the water-maze: differential expression of corticotropin-releasing hormone, CRH-R1, glucocorticoid receptors and brain-derived neurotrophic factor in limbic regions. Neuroendocrinology. 82 (5-6), 306-319 (2005).
  11. Anisman, H., Hayley, S., Kelly, O., Borowski, T., Merali, Z. Psychogenic, neurogenic, and systemic stressor effects on plasma corticosterone and behavior: Mouse strain-dependent outcomes. Behav. Neurosci. 115 (2), 443-454 (2001).
  12. Kim, J. J., Diamond, D. M. The stressed hippocampus, synaptic plasticity and lost memories. Nat. Rev. Neurosci. 3 (6), 453-462 (2002).
  13. Willner, P. Validity, reliability and utility of the chronic mild stress model of depression: a 10 year review and evaluation. Psychopharmacology (Berl). 134, 319-329 (1997).
  14. Leussis, M. P., Bolivar, V. J. Habituation in rodents: A review of behavior, neurobiology, and genetics. Neurosci. Biobehav. Rev. 30 (7), 1045-1064 (2006).
  15. Hurst, J. L., West, R. S. Taming anxiety in laboratory mice. Nat. Methods. 7 (10), 825-826 (2010).
  16. Dere, E., Huston, J. P., De Souza Silva, M. A. The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neurosci. Biobehav. Rev. 31, 673-704 (2007).
  17. Winters, B. D., Saksida, L. M., Bussey, T. J. Object recognition memory: Neurobiological mechanisms of encoding, consolidation and retrieval. Neurosci. Biobehav. Rev. 32, 1055-1070 (2008).
  18. Rutten, K., et al. Time-dependent involvement of cAMP and cGMP in consolidation of object memory: studies using selective phosphodiesterase type 2, 4 and 5 inhibitors. Eur. J. Pharmacol. 558 (1-3), 107-112 (2007).
  19. Prickaerts, J., De Vente, J., Honig, W., Steinbusch, H. W. M., Blokland, A. cGMP, but not cAMP, in rat hippocampus is involved in early stages of object memory consolidation. Eur. J. Pharmacol. 436 (1-2), 83-87 (2002).
  20. Bertaina-Anglade, V., Enjuanes, E., Morillon, D., Drieu la Rochelle, C. The object recognition task in rats and mice: A simple and rapid model in safety pharmacology to detect amnesic properties of a new chemical entity. J. Pharmacol. Toxicol. Methods. 54 (2), 99-105 (2006).
  21. Li, S., Wang, C., Wang, W., Dong, H., Hou, P., Tang, Y. Chronic mild stress impairs cognition in mice: From brain homeostasis to behavior. Life Sci. 82 (17), 934-942 (2008).
  22. Frick, K. M., Gresack, J. E. Sex Differences in the Behavioral Response to Spatial and Object Novelty in Adult C57BL/6 Mice. Behav. Neurosci. 117 (6), 1283-1291 (2003).
  23. Grayson, B., Leger, M., Piercy, C., Adamson, L., Harte, M., Neill, J. C. Assessment of disease-related cognitive impairments using the novel object recognition (NOR) task in rodents. Behav. Brain Res. 285, 176-193 (2015).
  24. Tuscher, J. J., Fortress, A. M., Kim, J., Frick, K. M. Regulation of object recognition and object placement by ovarian sex steroid hormones. Behav. Brain Res. 285, 140-157 (2015).
  25. Balderas, I., Moreno-Castilla, P., Bermudez-Rattoni, F. Dopamine D1 receptor activity modulates object recognition memory consolidation in the perirhinal cortex but not in the hippocampus. Hippocampus. 23 (10), 873-878 (2013).
  26. Akkerman, S., Blokland, A., Prickaerts, J. Mind the gap: delayed manifestation of long-term object memory improvement by phosphodiesterase inhibitors. Neurobiol. Learn. Mem. 109, 139-143 (2014).
  27. Domek-Łopacińska, K., Strosznajder, J. B. The effect of selective inhibition of cyclic GMP hydrolyzing phosphodiesterases 2 and 5 on learning and memory processes and nitric oxide synthase activity in brain during aging. Brain Res. 1216, 68-77 (2008).
  28. Reneerkens, O., et al. Inhibition of phoshodiesterase type 2 or type 10 reverses object memory deficits induced by scopolamine or MK-801. Behav. Brain Res. 236 (1), 16-22 (2013).
  29. Deacon, R. M. J. Housing, husbandry and handling of rodents for behavioral experiments. Nat. Protoc. 1 (2), 936-946 (2006).
  30. Şık, A., van Nieuwehuyzen, P., Prickaerts, J., Blokland, A. Performance of different mouse strains in an object recognition task. Behav. Brain Res. 147 (1-2), 49-54 (2003).
  31. Prut, L., Belzung, C., Rabelias, U. F., Psychobiologie, E. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors a review. Eur. J. Pharmacol. 463, 3-33 (2003).
  32. Akkerman, S., Prickaerts, J., Steinbusch, H. W. M., Blokland, A. Object recognition testing: statistical considerations. Behav. Brain Res. 232 (2), 317-322 (2012).
  33. Balderas, I., Rodriguez-Ortiz, C. J., Bermudez-Rattoni, F. Retrieval and reconsolidation of object recognition memory are independent processes in the perirhinal cortex. Neuroscienze. 253, 398-405 (2013).
  34. de curtis, M., Pare, D. The rhinal cortices: a wall of inhibition between the neocortex and the hippocampus. Prog. Neurobiol. 74 (2), 101-110 (2004).
  35. Brown, M. W., Barker, G. R. I., Aggleton, J. P., Warburton, E. C. What pharmacological interventions indicate concerning the role of the perirhinal cortex in recognition memory. Neuropsychologia. 50 (13), 3122-3140 (2012).
  36. Moore, S. J., Deshpande, K., Stinnett, G. S., Seasholtz, A. F., Murphy, G. G. Conversion of short-term to long-term memory in the novel object recognition paradigm. Neurobiol. Learn. Mem. 105, 174-185 (2013).
  37. Suzuki, W. A. The anatomy, physiology and functions of the perirhinal cortex. Curr. Opin. Neurobiol. 6, 179-186 (1996).
  38. Wan, H., Aggleton, J. P., Brown, M. W. Different contributions of the hippocampus and perirhinal cortex to recognition memory. J. Neurosci. 19 (3), 1142-1148 (1999).
  39. Warburton, E. C., Brown, M. W. Findings from animals concerning when interactions between perirhinal cortex, hippocampus and medial prefrontal cortex are necessary for recognition memory. Neuropsychologia. 48 (8), 2262-2272 (2010).
check_url/it/55718?article_type=t

Play Video

Citazione di questo articolo
Lueptow, L. M. Novel Object Recognition Test for the Investigation of Learning and Memory in Mice. J. Vis. Exp. (126), e55718, doi:10.3791/55718 (2017).

View Video