Summary

微米/纳米尺度应变分布测量从采样莫尔条纹

Published: May 23, 2017
doi:

Summary

这里介绍了采用2像素和多像素采样方法进行微/纳米级高精度应变分布测量的采样莫尔技术。

Abstract

这项工作描述了全场微/纳米尺度变形测量的采样莫尔技术的测量程序和原理。开发的技术可以通过两种方式进行:使用重建的多重莫尔法或空间相移采样莫尔法。当样本网格间距约为2像素时,产生2像素采样莫尔条纹以重建用于变形测量的乘法云纹图案。位移和应变灵敏度都是在同一广视野范围内的传统扫描波纹法的两倍。当样本网格间距大于或大于3像素时,产生多像素采样莫尔条纹,并组合空间相移技术进行全场变形测量。应变测量精度得到显着提高,并且易于实现自动批量测量。两种方法都可以像传统的莫尔技术一样,测量来自单点格栅图像的二维(2D)应变分布,而不旋转样品或扫描线。作为示例,在三点弯曲试验中测量了二维位移和应变分布,包括两个碳纤维增强塑料样品的剪切应变。所提出的技术预计将在各种材料的机械性能,裂纹发生和残余应力的非破坏性定量评估中发挥重要作用。

Introduction

微/纳米尺度变形测量对于评估先进材料的机械性能,不稳定行为,残余应力和裂纹发生至关重要。由于光学技术是非接触的,全场的和非破坏性的,所以已经开发了用于近几十年的变形测量​​的各种光学方法。近年来,微纳米尺度变形测量技术主要包括莫尔方法1,2,3,4 ,几何相位分析(GPA) 5,6 ,傅里叶变换(FT),数字图像相关(DIC)和电子散斑图案干涉测量(ESPI)。在这些技术中,由于存在多个频率,所以GPA和FT不太适用于复杂的变形测量​​。 DIC方法是sim因为变形载体是随机斑点,而是无噪声。最后,ESPI对振动非常敏感。

在微/纳米级莫尔方法中,目前最常用的方法是显微镜扫描莫尔法,例如电子扫描莫尔7,8,9 ,激光扫描莫尔10,11和原子力显微镜(AFM)莫尔12 ,以及一些基于显微镜的莫尔方法,例如数字/重叠莫尔13,14,15方法和乘法/分数莫尔法16,17 。扫描莫尔法具有广泛的视野,高分辨率等诸多优点并且对随机噪声不敏感。然而,传统的扫描莫尔法对于2D应变测量是不方便的,因为需要将样品台或扫描方向旋转90°并扫描两次以在两个方向18上产生莫尔条纹。旋转和双重扫描过程引入旋转误差并花费很长时间,严重影响2D应变的测量精度,特别是对于剪切应变。虽然时间相移技术19,20可以提高变形测量精度,但是它需要时间和特殊的相移装置不适于动态测试。

采样莫尔法21,22在位移测量中具有高精度,并且现在主要用于当汽车p屁股。为了将采样莫尔法扩展到微尺度/纳米尺度的2D应变测量,从2像素采样莫尔条纹开始,新开发了一种重新构成的多重波纹法,其中测量是灵敏度的两倍,保持扫描波纹法。此外,空间相移采样莫尔法也是从多像素采样莫尔条纹开发的,允许进行高精度应变测量。该协议将介绍详细的应变测量程序,并有望帮助研究人员和工程师学习如何测量变形,改进材料和产品的制造过程。

Protocol

1.样品上的微/纳米级网格的确认 样品加工 将样品切割成在显微镜下使用的特定加载装置( 例如, 1×5×30mm 3 )所需的尺寸,使得观察到的表面比感兴趣区域大1.5倍。 对待观察的样品表面进行抛光( 例如, 1 x 30 mm 2 ),连续在自动抛光机上使用粗细砂纸( 例如,使用SiC箔#320 3分钟,然后在800 rpm下#800进行1分钟和30 N)。每?…

Representative Results

根据莫尔形成原理23和测量过程( 图1 )测量两种碳纤维增强塑料(CFRP)样品(#1和#2)的二维位移和应变分布。 CFRP样品由10-11μm直径的K13D碳纤维和环氧树脂制成。使用来自两步采样莫尔条纹的重建的叠加莫尔法确定CFRP#1的变形,并且使用来自三步采样莫尔条纹的空间相移采样莫尔法测量CFRP#2的变形。 <p class="jove_step" fo:kee…

Discussion

在所描述的技术中,如果样品上没有周期性图案,则一个具有挑战性的步骤是微/纳米尺度网格或光栅(缩写为格栅)制造26 。变形前网格间距应均匀,因为它是变形测量的重要参数。如果材料是金属,金属合金或陶瓷,UV或加热纳米压印光刻(NIL) 27 ,电子束光刻(EBL) 2 ,聚焦离子束(FIB)铣削6或网格重复法<sup class="xref"…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作由JSPS KAKENHI,授权号JP16K17988和JP16K05996以及由内阁办公室经营的跨部门战略创新促进计划D66,结构材料创新测量与分析(SIP-IMASM)支持。作者也对Drs感激不尽。 NISSISISISISISHI和Kimiyoshi Naito的CFRP材料。

Materials

Automatic Polishing Machine Marumoto Struers K.K. LaboPol-30, Labor Force-100
Carbon Fiber Reinforced Plastic Mitsubishi Plastics, Inc.  HYEJ16M95DHX1
Computer DELL Japan VOSTRO Can be replaced with another computer with C++ programming language
Image Recording Software Lasertec Corporation LMEYE7 Installed in a laser scanning microscope
Ion Coater Japan Electron Optics Laboratory Ltd. JEC3000F
Laser Scanning Microscope Lasertec Corporation OPTELICS HYBRID
Nanoimprint Device Japan Laser Corporation  EUN-4200 Can be replaced with a electron beam lithography device or a focused ion beam milling device
Nanoimprint Mold SCIVAX Corporation 3.0μm pitch Customized
Nanoimprint Resist Toyo Gosei Co., Ltd  PAK01
Polishing Solution Marumoto Struers K.K. DP-Spray P 15μm, 1μm, 0.25μm Use from coarse to fine
Pipet AS ONE Corporation 10mL
Sand Paper Marumoto Struers K.K. SiC Foil #320, #800 Use from coarse to fine
Spin Coater MIKASA Corporation MS-A100

Riferimenti

  1. Weller, R., Shepard, B. Displacement measurement by mechanical interferometry. Proc. Soc. Exp. Stress Anal. 6 (1), 35-38 (1948).
  2. Kishimoto, S., Egashira, M., Shinya, N. Microcreep deformation measurements by a moiré method using electron beam lithography and electron beam scan. Opt. Eng. 32 (3), 522-526 (1993).
  3. Ifju, P., Han, B. Recent applications of moiré interferometry. Exp. Mech. 50 (8), 1129-1147 (2010).
  4. Zhang, H., Wu, C., Liu, Z., Xie, H. A curved surface micro-moiré method and its application in evaluating curved surface residual stress. Meas. Sci. Technol. 25 (9), 095002 (2014).
  5. Zhang, H., Liu, Z., Wen, H., Xie, H., Liu, C. Subset geometric phase analysis method for deformation evaluation of HRTEM images. Ultramicroscopy. 171, 34-42 (2016).
  6. Wang, Q., Kishimoto, S., Xie, H., Liu, Z., Lou, X. In situ high temperature creep deformation of micro-structure with metal film wire on flexible membrane using geometric phase analysis. Microelectron. Reliab. 53 (4), 652-657 (2013).
  7. Wang, Q., Kishimoto, S. Simultaneous analysis of residual stress and stress intensity factor in a resist after UV-nanoimprint lithography based on electron moiré fringes. J. Micromech. Microeng. 22 (10), 105021 (2012).
  8. Kishimoto, S., Wang, Q., Xie, H., Zhao, Y. Study of the surface structure of butterfly wings using the scanning electron microscopic moiré method. Appl. Opt. 46 (28), 7026-7034 (2007).
  9. Li, C., Liu, Z., Xie, H., Wu, D. Novel 3D SEM Moiré method for micro height measurement. Opt. Express. 21 (13), 15734-15746 (2013).
  10. Xie, H., Wang, Q., Kishimoto, S., Dai, F. Characterization of planar periodic structure using inverse laser scanning confocal microscopy moiré method and its application in the structure of butterfly wing. J. Appl. Phys. 101 (10), 103511 (2007).
  11. Tang, M., Xie, H., Wang, Q., Zhu, J. Phase-shifting laser scanning confocal microscopy moiré method and its applications. Meas. Sci. Technol. 21 (5), 055110 (2010).
  12. Xie, H., Kishimoto, S., Asundi, A., Boay, C. G., Shinya, N., Yu, J., Ngoi, B. K. In-plane deformation measurement using the atomic force microscope moiré method. Nanotechnology. 11 (1), 24 (2000).
  13. Xie, H., Liu, Z., Fang, D., Dai, F., Gao, H., Zhao, Y. A study on the digital nano-moiré method and its phase shifting technique. Meas. Sci. Technol. 15 (9), 1716 (2004).
  14. Wang, Q., Kishimoto, S., Yamauchi, Y. Three-directional structural characterization of hexagonal packed nanoparticles by hexagonal digital moiré method. Opt. Lett. 37 (4), 548-550 (2012).
  15. Liu, Z., Lou, X., Gao, J. Deformation analysis of MEMS structures by modified digital moiré methods. Opt. Lasers Eng. 48 (11), 1067-1075 (2010).
  16. Li, Y., Xie, H., Chen, P., Zhang, Q. Theoretical analysis of moiré fringe multiplication under a scanning electron microscope. Meas. Sci. Technol. 22 (2), 025301 (2010).
  17. Patorski, K., Wielgus, M., Ekielski, M., Kaźmierczak, P. AFM nanomoiré technique with phase multiplication. Meas. Sci. Technol. 24 (3), 035402 (2013).
  18. Wang, Q., Ri, S., Takashita, Y., Ogihara, S., Yoshida, S. Chapter 33: Full-field measurements of principal strains and orientations using moiré fringes. Advancement of Optical Methods in Experimental Mechanics. 3, 251-259 (2017).
  19. Wang, Z., Han, B. Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms. Opt. Lett. 29 (14), 1671-1673 (2004).
  20. Wang, Q., Xie, H., Hu, Z., Zhang, J., Sun, J., Liu, G. Residual thermo-creep deformation of copper interconnects by phase-shifting SEM moiré method. Appl. Mech. Mater. 83, 185-190 (2011).
  21. Ri, S., Fujigaki, M., Morimoto, Y. Sampling moiré method for accurate small deformation distribution measurement. Exp. Mech. 50 (4), 501-508 (2010).
  22. Ri, S., Muramatsu, T. Theoretical error analysis of the sampling moiré method and phase compensation methodology for single-shot phase analysis. Appl. Opt. 51 (16), 3214-3223 (2012).
  23. Wang, Q., Ri, S., Tsuda, H. Digital sampling Moiré as a substitute for microscope scanning Moiré for high-sensitivity and full-field deformation measurement at micron/nano scales. Appl. Opt. 55 (25), 6858-6865 (2016).
  24. Dai, F., Wang, Z. Automatic fringe patterns analysis using digital processing tehniques: I fringe center method. Acta Photonica Sinica. 28, 700-706 (1999).
  25. Gutmann, B., Weber, H. Phase-shifter calibration and error detection in phase-shifting applications: a new method. Appl. Opt. 37 (32), 7624-7631 (1998).
  26. Wang, Q., Kishimoto, S., Tanaka, Y., Kagawa, Y. Micro/submicro grating fabrication on metals for deformation measurement based on ultraviolet nanoimprint lithography. Opt. Lasers Eng. 51 (7), 944-948 (2013).
  27. Min-Jin, T., Hui-Min, X., Yan-Jie, L., Xiao-Jun, L., Dan, W. A new grating fabrication technique on metal films using UV-nanoimprint lithography. Chin. Phys. Lett. 29 (9), 098101 (2012).
check_url/it/55739?article_type=t

Play Video

Citazione di questo articolo
Wang, Q., Ri, S., Tsuda, H. Micro/Nano-scale Strain Distribution Measurement from Sampling Moiré Fringes. J. Vis. Exp. (123), e55739, doi:10.3791/55739 (2017).

View Video