Summary

主动脉阻塞后脊髓缺血大鼠模型中的可再生电机缺陷

Published: July 22, 2017
doi:

Summary

本研究显示了在大鼠中进行脊髓缺血的微创和易复制模型的技术。通过控制主动脉闭塞时间可以产生不同程度的后肢运动障碍。

Abstract

脊髓缺血是胸腹主动脉瘤手术后的致命并发症。研究人员可以使用脊髓缺血实验模型调查预防和治疗这种并发症的策略。这里描述的模型表明与大鼠脊髓缺血模型中胸主动脉闭塞后的闭塞长度有关的不同程度的截瘫。

2-Fr。气球导管通过股动脉进入下行胸主动脉,直到导管尖端置于麻醉的雄性Sprague-Dawley大鼠的左锁骨下动脉中。通过使导管气囊膨胀来诱导脊髓缺血。经过一段闭塞时间(9,10或11分钟)后,气囊放气。术后24 h采用运动缺陷指数进行神经病理学评估,收集脊髓进行组织病理学检查。

主动脉闭塞9分钟的大鼠在后肢显示出轻度且可逆的运动障碍,经受10分钟主动脉闭塞的大鼠出现中度但可逆运动障碍,经受主动脉闭塞11分钟的大鼠显示完全和持续瘫痪,大鼠主动脉闭塞持续时间较长的大鼠脊髓部分运动神经元更保守。

使用这种脊髓缺血模型,研究人员可以在胸主动脉闭塞后达到可重现的后肢运动障碍。

Introduction

截瘫是胸腹主动脉瘤手术的致命并发症。这是由于在主动脉夹紧和松开过程中发生的脊髓缺血 – 再灌注损伤。 1个几种策略包括全身体温过低和脑脊液引流已被引入到保护脊髓,2,3,4,但许多患者仍然受到伤病影响。

引入了几种动物脊髓缺血模型来研究其发病机制,制定了对损伤的保护策略。在本研究中,我们概述了基于Taira和Marsala方法的脊髓缺血大鼠模型。 5大鼠的脊髓循环系统与人类脊髓血管和侧支系统非常相似,尽管大小和位置。 6,7因此,大鼠是解剖学上合适的动物,以利用用于实验模型调查发病,并发症和治疗脊髓缺血的。此外,这种脊髓缺血模型通过利用胸主动脉的血管内气囊闭塞以最小的干预产生可靠的主动脉闭塞。

在这项研究中,我们证明,这种脊髓缺血大鼠模型诱导后肢的可重复的运动缺陷,其严重程度随主动脉闭塞时间而变化。

Protocol

本议定书由首尔国立大学邦唐医院机构动物护理使用委员会批准。根据美国国家卫生研究院护理和使用实验动物的指南进行动物护理和实验。 手术准备在手术前,用无菌盐水冲洗导管以确保通畅。 将加热毯放在手术台上,并用无菌悬垂盖住桌子。 将雄性Sprague-Dawley大鼠(270-330g)放入具有3.0%-4.0%异氟烷的丙烯酸盒中,在100%氧气中。 向大鼠的?…

Representative Results

在脊髓缺血期间,主动脉闭塞9分钟(n = 3),10分钟(n = 3)或11分钟(n = 3)。大鼠的运动缺陷指数见表2.主动脉闭塞9分钟的大鼠在后肢显示轻度和可逆的运动障碍。大鼠经历10分钟的主动脉闭塞呈现中度运动缺陷,但不完全麻痹。经历11分钟闭塞时间的大鼠显示完全和持续性麻痹。 用H&E染色的脊髓切片的代表性照片如图1所示。在经历较短持续时间的?…

Discussion

在目前的研究中,我们展示了一种基于Taira和Marsala方法5的脊髓缺血大鼠模型,其根据主动脉闭塞时间在后肢中引起不同程度的运动障碍。

主动脉闭塞的长度可影响运动障碍的程度。如果主动脉闭塞时间较长,运动缺陷变得更加严重。因此,研究人员可以通过控制该模型中的主动脉闭塞时间来实现一定程度的运动障碍。

我们的模型涉及?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

作者没有确认。

Materials

Fogarty Arterial Embolectomy catheter Edward Life Sciences 120602F a balloon-tipped catheter inserted into the femoral artery
BD Insyte-N Autoguard Shielded IV catheter  BD  381411 24-gauge intravenous catheter
50mL syringe KOREA VACCINE  KOVAX-SYRINGE 50mL Facial mask
1mL syringe KOREA VACCINE KOVAX-SYRINGE 1ml
Recal probe HARVARD APPARATUS 50-7221F Rectal probe for temperature monitoring
Micro dissecting spring scissor Jeung do bio & Plant co.LTD. JD-S-10 Micro-scissor
SCISSOR (SHARP-SHARP) Jeung do bio & Plant co.LTD. S-51-12-S Scissors
Retractor Jeung do bio & Plant co.LTD. JD-S-74A Retractor
Micro forcep  Jeung do bio & Plant co.LTD. JD-S-29 Micro-forceps
MOSQUITO FORCEP (Curved) Jeung do bio & Plant co.LTD. S-44-CPK Curved forceps
DRESSING FORCEP  Jeung do bio & Plant co.LTD. S-37-16S Blunted forceps
4/0 black silk  Woori Medical S431 4.0 black silk suture
3-WAY STOCK Seonwon Medcal D-98-01 3-way stopcock
Patient monitor PHILIPS MP20 The arterial pressure monitoring device. 
Heating blanket Self production Heating blanket
Microtube and external reservoir Self production Microtube and external reservoir
Heparin JW Pharmaceutical Heparin
0.9% NS 1000ml JW Pharmaceutical Normal saline
Isoflurane Hana Med Isoflurane

Riferimenti

  1. Greenberg, R. K., et al. Contemporary analysis of descending thoracic and thoracoabdominal aneurysm repair: a comparison of endovascular and open techniques. Circulation. 118 (8), 808-817 (2008).
  2. Okita, Y. Fighting spinal cord complication during surgery for thoracoabdominal aortic disease. Gen Thorac Cardiovasc Surg. 59 (2), 79-90 (2011).
  3. Fleck, T. M., et al. Improved outcome in thoracoabdominal aortic aneurysm repair: the role of cerebrospinal fluid drainage. Neurocrit Care. 2 (1), 11-16 (2005).
  4. Kouchoukos, N. T., et al. Hypothermic bypass and circulatory arrest for operations on the descending thoracic and thoracoabdominal aorta. Ann Thorac Surg. 60 (1), 67-76 (1995).
  5. Taira, Y., Marsala, M. Effect of proximal arterial perfusion pressure on function, spinal cord blood flow, and histopathologic changes after increasing intervals of aortic occlusion in the rat. Stroke. 27 (10), 1850-1858 (1996).
  6. Tveten, L. Spinal cord vascularity. III. The spinal cord arteries in man. Acta Radiol Diagn (Stockh). 17 (3), 257-273 (1976).
  7. Woollam, D. H., Millen, J. W. The arterial supply of the spinal cord and its significance. J Neurol Neurosurg Psychiatry. 18 (2), 97-102 (1955).
  8. Kennedy, H. S., Puth, F., Van Hoy, M., Le Pichon, C. A method for removing the brain and spinal cord as one unit from adult mice and rats. Lab Anim (NY). 40 (2), 53-57 (2011).
  9. Umehara, S., Goyagi, T., Nishikawa, T., Tobe, Y., Masaki, Y. Esmolol and landiolol, selective β1 adrenoreceptor antagonists, provide neuroprotection against spinal cord ischemia and reperfusion in rats. Anesth Analg. 110 (4), 1133-1137 (2010).
  10. De Ley, G., Nshimyumuremyi, J. B., Leusen, I. Hemispheric blood flow in the rat after unilateral common carotid occlusion: evolution with time. Stroke. 16 (1), 69-73 (1985).
  11. Coyle, P., Panzenbeck, M. J. Collateral development after carotid artery occlusion in Fischer 344 rats. Stroke. 21 (2), 316-321 (1990).
  12. Levine, S. Anoxic-ischemic encephalopathy in rats. Am J Pathol. 36, 1-17 (1960).
  13. Prior, B. M., et al. Time course of changes in collateral blood flow and isolated vessel size and gene expression after femoral artery occlusion in rats. Am J Physiol Heart Circ Physiol. 287 (6), H2434-H2447 (2004).
  14. Yang, H. T., Feng, Y., Allen, L. A., Protter, A., Terjung, R. L. Efficacy and specificity of bFGFincreased collateral flow in experimental peripheral arterial insufficiency. Am J Physiol Heart Circ Physiol. 278 (6), H1966-H1973 (2000).
  15. Kakinohana, M., Fuchigami, T., Nakamura, S., Sasara, T., Kawabata, T., Sugahara, K. Intrathecal administration of morphine, but not small dose, induced spastic paraparesis after a noninjurious interval of aortic occlusion in rats. Anesth Analg. 96 (3), 769-775 (2003).
  16. Horiuchi, T., et al. The effects of the delta-opioid agonist SNC80 on hind-limb motor function and neuronal injury after spinal cord ischemia in rats. Anesth Analg. 99 (1), 235-240 (2004).
  17. Griepp, R. B., Griepp, E. B. Spinal cord perfusion and protection during descending thoracic and thoracoabdominal aortic surgery: the collateral network concept. Ann Thorac Surg. 83 (2), S865-S869 (2007).
check_url/it/55814?article_type=t

Play Video

Citazione di questo articolo
Hwang, J., Sohn, H., Kim, J., Park, S., Park, J., Lim, M., Han, S. Reproducible Motor Deficit Following Aortic Occlusion in a Rat Model Of Spinal Cord Ischemia. J. Vis. Exp. (125), e55814, doi:10.3791/55814 (2017).

View Video