Summary

从小鼠骨骼肌分离I型和II型周细胞

Published: May 26, 2017
doi:

Summary

这项工作描述了基于FACS的协议,允许从骨骼肌容易和同时地分离I型和II型周细胞。

Abstract

周细胞是血管内多能细胞,其表现出不同器官甚至在相同组织内的异质性。在骨骼肌中,至少有两个周细胞亚群(称为I型和II型),其表达不同的分子标记并具有明显的分化能力。使用NG2-DsRed和Nestin-GFP双转基因小鼠,成功分离了I型(NG2-DsRed + Nestin-GFP)和II型(NG2-DsRed + Nestin-GFP + )周细胞。然而,这些双转基因小鼠的可用性阻止了该纯化方法的广泛使用。这项工作描述了一种替代方案,允许从骨骼肌容易和同时隔离I型和II型周细胞。该协议采用荧光激活细胞分选(FACS)技术,并将靶蛋白GFP信号靶向PDGFRβ而不是NG2。隔离后,键入I和type II周细胞显示不同的形态。此外,用这种新方法分离的I型和II型周细胞,如分离自双转基因小鼠的那些,分别是脂肪形成和肌原性的。这些结果表明,该方案可用于从骨骼肌和可能来自其他组织中分离周细胞亚群。

Introduction

肌营养不良是一种肌肉退行性疾病,目前尚无有效治疗。促进组织再生的疗法的发展一直是非常有意义的。损伤后组织再生和修复取决于常驻干细胞/祖细胞1 。卫星细胞承诺造血前体细胞有助于肌肉再生2,3,4,5,6,7。然而,他们的临床使用受到其有限的迁移和注射后的低存活率以及在体外扩增后其分化能力降低8,9,10,11的阻碍。除了satellite细胞,骨骼肌也含有许多其他具有肌原性潜能12,13,14,15,16等细胞群,如血小板衍生生长因子受体-β(PDGFRβ) – 阳性间质细胞。有证据表明,肌肉衍生的PDGFRβ +细胞能够分化成肌原细胞,改善肌肉病理和功能14,17,18,19,20。 PDGFRβ主要标记周细胞21 ,它们是多能性的血管周围细胞22,23 。除PDGFRβ之外,许多其他标志物,包括神经元胶质细胞2(NG2)和CD146也被用于齿状细胞21 。然而,应该注意的是,这些标记物都不是percyte特异性21 。最近的研究揭示了肌肉周细胞的两种亚型,称为I型和II型,其表达不同的分子标记并实现不同的功能19,24,25。生物化学上,I型周细胞是NG2 + Nestin,而II型周细胞是NG2 + Nestin + 19,24。功能上,I型周细胞可能经历脂肪分化,有助于脂肪堆积和/或纤维化,而II型周细胞可以沿着肌原性途径分化,从而有助于肌肉再生19,24,25。这些结果表明:(1)I型周细胞可能be针对脂肪退化性疾病/纤维化的治疗,(2)II型周细胞对肌营养不良具有很大的治疗潜力。这些人群的进一步调查和表征需要能够以高纯度分离I型和II型周细胞的分离方案。

目前,周细胞亚群的分离取决于NG2-DsRed和Nestin-GFP双转基因小鼠19,24。 NG2-DsRed小鼠的可用性和大多数NG2抗体的质量限制了该方法的广泛使用。鉴于所有NG2 +周细胞也在骨骼肌19,20,24中表达PDGFRβ,我们假设NG2可被PDGFRβ替代以分离周细胞及其亚群。这项工作描述了基于FACS的协议使用PDGFRβ染色和Nestin-GFP信号。这种方法对于研究者来说要求较低,因为:(1)它不需要NG2-DsRed背景,(2)它使用市售的PDGFRβ抗体,其被良好表征。此外,它能够以高纯度同时分离I型和II型周细胞,从而进一步研究这些周细胞亚群体的生物学和治疗潜力。纯化后,这些细胞可以在培养物中生长,并且它们的形态可以被可视化。这项工作还表明,使用这种方法分离的I型和II型周细胞,如从双转基因小鼠纯化的那些,分别是脂肪形成和肌原性的。

Protocol

野生型和Nestin-GFP转基因小鼠被安置在明尼苏达大学的动物设施中。所有实验程序均由明尼苏达大学体制动物护理和使用委员会批准,并符合NIH“实验动物护理和使用指南”。 肌肉解剖和单细胞隔离用三溴乙醇(250mg / kg,ip)将成年小鼠(6-10周,男性和女性)安乐死,并用70%乙醇对其腹部皮肤进行消毒。 注意:这里使用三溴乙醇代替氯胺酮进行麻醉/安乐死,因?…

Representative Results

FACS参数,包括激光强度和通道补偿,基于未染色控制和单色控制的结果进行校正。 PDGFRβ-PE-FMO对照用于设置PDGFRβ-PE +群体的门控( 图1A )。在PDGFRβ-PE-细胞中,代表巢蛋白-GFP +和巢蛋白 – GFP-细胞的两个群体被清楚地分离( 图1A )。基于PDGFRβ-PE +和巢蛋白-GFP +的门控设置PDGFRβ-PE +巢蛋?…

Discussion

周细胞是位于毛细血管21,26的外侧表面上的多能血管周围细胞22,23 。在骨骼肌中,周细胞能够沿着脂肪生成和/或造血途径19,20,24区分。最近的研究揭示了两个亚细胞周期细胞,具有不同的标记表达和不同的分化潜力19,24,25。 I型(NG2 + Nestin )周细胞是脂肪形成的,而II型(NG2 + Nestin + )周细胞是肌原性的。这些亚群体研究的分离需…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了强直性营养不良基金会(MDF-FF-2014-0013)和美国心脏协会(16SDG29320001)的科学家发展拨款的基金A-Fellow资助部分支持。

Materials

Cell Sorter Sony SH800
Automatic Setup Beads Sony LE-B3001
DMEM Gibco 11995
Avertin  Sigma T48402
Pericyte Growth Medium ScienCell 1201
MSC Basal Medium (Mouse) Stemcell Technologies 5501
Adipogenic Stimulatory Supplement (Mouse) Stemcell Technologies 5503
Fetal Bovine Serum Gibco 16000
Horse Serum Sigma H1270
Collagenase Type 2 Worthington LS004176
0.25% Trypsin/EDTA  Gibco 25200
Penicillin/Streptomycin Gibco 15140
PDL Sigma P6407
PDGFRβ-PE Antibody eBioscience 12-1402
Perilipin Antibody Sigma P1998
S-Myosin Antibody DSHB MF-20
Alexa 555-anti-rabbit antibody  ThermoFisher Scientific A-31572
Alexa 555-anti-mouse antibody ThermoFisher Scientific A-31570
Mounting Medium with DAPI Vector Laboratories H-1200
DAPI ThermoFisher Scientific D1306
HEPES Gibco 15630
EDTA Fisher BP120
BSA Sigma A2058
NH4Cl Fisher Scientific A661
KHCO3 Fisher Scientific P184
PBS Gibco 14190
18G Needles BD 305196
10ml Serological Pipette BD 357551

Riferimenti

  1. Rennert, R. C., Sorkin, M., Garg, R. K., Gurtner, G. C. Stem cell recruitment after injury: lessons for regenerative medicine. Regenerative medicine. 7 (6), 833-850 (2012).
  2. Sambasivan, R., et al. Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development. 138 (17), 3647-3656 (2011).
  3. Relaix, F., Zammit, P. S. Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development. 139 (16), 2845-2856 (2012).
  4. von Maltzahn, J., Jones, A. E., Parks, R. J., Rudnicki, M. A. Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. Proc Natl Acad Sci U S A. 110 (41), 16474-16479 (2013).
  5. Lepper, C., Partridge, T. A., Fan, C. M. An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development. 138 (17), 3639-3646 (2011).
  6. Kuang, S., Charge, S. B., Seale, P., Huh, M., Rudnicki, M. A. Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis. J Cell Biol. 172 (1), 103-113 (2006).
  7. Murphy, M. M., Lawson, J. A., Mathew, S. J., Hutcheson, D. A., Kardon, G. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development. 138 (17), 3625-3637 (2011).
  8. Morgan, J. E., Pagel, C. N., Sherratt, T., Partridge, T. A. Long-term persistence and migration of myogenic cells injected into pre-irradiated muscles of mdx mice. J Neurol Sci. 115 (2), 191-200 (1993).
  9. Beauchamp, J. R., Morgan, J. E., Pagel, C. N., Partridge, T. A. Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J Cell Biol. 144 (6), 1113-1122 (1999).
  10. Partridge, T. A. Invited review: myoblast transfer: a possible therapy for inherited myopathies. Muscle Nerve. 14 (3), 197-212 (1991).
  11. Montarras, D., et al. Direct isolation of satellite cells for skeletal muscle regeneration. Science. 309 (5743), 2064-2067 (2005).
  12. Asakura, A., Seale, P., Girgis-Gabardo, A., Rudnicki, M. A. Myogenic specification of side population cells in skeletal muscle. J Cell Biol. 159 (1), 123-134 (2002).
  13. Tamaki, T., et al. Skeletal muscle-derived CD34+/45- and CD34-/45- stem cells are situated hierarchically upstream of Pax7+ cells. Stem Cells Dev. 17 (4), 653-667 (2008).
  14. Dellavalle, A., et al. Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat Commun. 2, 499 (2011).
  15. Mitchell, K. J., et al. Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development. Nat Cell Biol. 12 (3), 257-266 (2010).
  16. Pannerec, A., Formicola, L., Besson, V., Marazzi, G., Sassoon, D. A. Defining skeletal muscle resident progenitors and their cell fate potentials. Development. 140 (14), 2879-2891 (2013).
  17. Dellavalle, A., et al. Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol. 9 (3), 255-267 (2007).
  18. Kostallari, E., et al. Pericytes in the myovascular niche promote post-natal myofiber growth and satellite cell quiescence. Development. 142 (7), 1242-1253 (2015).
  19. Birbrair, A., et al. Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells Dev. 22 (16), 2298-2314 (2013).
  20. Yao, Y., Norris, E. H., Mason, C. E., Strickland, S. Laminin regulates PDGFRbeta(+) cell stemness and muscle development. Nat Commun. 7, 11415 (2016).
  21. Armulik, A., Genove, G., Betsholtz, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 21 (2), 193-215 (2011).
  22. Dore-Duffy, P. Pericytes: pluripotent cells of the blood brain barrier. Curr Pharm Des. 14 (16), 1581-1593 (2008).
  23. Dore-Duffy, P., Katychev, A., Wang, X., Van Buren, E. CNS microvascular pericytes exhibit multipotential stem cell activity. J Cereb Blood Flow Metab. 26 (5), 613-624 (2006).
  24. Birbrair, A., et al. Skeletal muscle pericyte subtypes differ in their differentiation potential. Stem Cell Res. 10 (1), 67-84 (2013).
  25. Gautam, J., Nirwane, A., Yao, Y. Laminin differentially regulates the stemness of type I and type II pericytes. Stem Cell Research & Therapy. 8 (1), 28 (2017).
  26. Birbrair, A., et al. Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle. Front Aging Neurosci. 6, 245 (2014).
check_url/it/55904?article_type=t

Play Video

Citazione di questo articolo
Nirwane, A., Gautam, J., Yao, Y. Isolation of Type I and Type II Pericytes from Mouse Skeletal Muscles. J. Vis. Exp. (123), e55904, doi:10.3791/55904 (2017).

View Video