Summary

激光多普勒: 一种测量胰岛微血管血管舒体内的工具

Published: March 08, 2018
doi:

Summary

胰岛微血管血管舒缩调节胰岛血液分布, 维持胰岛β细胞的生理功能。本协议描述了使用激光多普勒显示器测定胰岛微血管血管舒在体内的功能状态, 并评估胰岛微循环对胰腺相关疾病的贡献。

Abstract

微血管血管舒缩作为微循环的功能性状态, 对于氧气和养分的输送以及二氧化碳和废弃物的去除具有重要意义。微血管血管舒缩的损伤可能是微循环相关疾病发展的关键步骤。此外, 高血管化胰岛适应内分泌功能。在这方面, 似乎可以推断胰岛微血管血管舒缩的功能状态可能影响胰岛功能。胰岛微血管血管舒缩功能状态的病理变化分析可能是确定胰岛微循环对相关疾病如糖尿病的贡献的可行策略,胰腺炎,。因此, 本协议描述使用激光多普勒血流监测仪确定胰岛微血管血管舒缩的功能状态, 建立参数 (包括平均血流灌注、振幅、频率和相对胰岛微血管血管舒缩的速度, 用于评价微循环功能状态。在链脲佐菌素诱导的糖尿病小鼠模型中, 我们观察到胰岛微血管血管舒缩功能状态受损。总之, 这种评估胰岛微血管血管舒在体内的方法可能揭示与胰岛疾病有关的机制。

Introduction

微血管血管舒缩作为微循环功能状态的一个参数, 负责氧气、营养素和荷尔蒙的传递和交换, 对去除代谢产物, 如二氧化碳和细胞浪费至关重要。1. 微血管血管舒缩还调节血液流量分布和组织灌注, 从而影响局部微循环血压和炎症反应, 可诱发多种疾病的水肿。因此, 微血管血管舒缩对维持器官的生理功能非常重要2, 3, 4, 组织和组件单元格.微血管血管舒缩的损害可能是发展微循环相关疾病的关键步骤之一5。

激光多普勒初步发展为观察和定量在微循环研究领域的6。该技术与其他技术方法 (例如,激光散斑7, 经皮氧,) 一起被认为是评价微循环血流的黄金标准。根据多普勒移位原理, 用激光多普勒装置测定局部微循环 (即,毛细血管, 动脉, 静脉,) 的血流灌注的基本原理。当光粒子遇到微血管中的运动血细胞时, 受激发射光的波长和频率会发生变化, 或者保持不变。因此, 在微循环中, 血细胞的数量和速度是与多普勒转移光的大小和频率分布有关的关键因素, 而微血管血流方向则无关紧要。使用不同的方法, 各种组织已被用于微循环研究, 包括 mesenteries 和背皮脂室的小鼠, 大鼠, 仓鼠, 甚至人类8。然而, 在本协议中, 我们重点研究胰岛微血管血管舒缩的功能状态, 用激光多普勒和自制的评价参数系统进行评价。

胰岛微循环主要由胰岛微血管构成, 表现出鲜明的特征。胰岛毛细血管网络显示五倍以上的密度比毛细管网络的外分泌对应9。胰岛内皮细胞提供输入葡萄糖和传播胰岛素的导管, 将氧气传递给胰岛β细胞代谢活性细胞。此外, 新的证据也表明, 胰岛微血管不仅涉及调节胰岛素基因表达和β细胞生存, 而且还影响β细胞功能;促进β细胞增殖;并产生一些血管活性、血管生成物质和生长因子10。因此, 在这方面, 我们推断胰岛微血管血管舒缩的功能状态可能影响胰岛β细胞功能, 并参与疾病的发病机制, 如急性/慢性胰腺炎, 糖尿病等与胰腺有关的疾病。

分析胰岛微血管血管舒缩功能状态的病理变化可能是确定胰岛微循环对上述疾病贡献的可行策略。详细的分步过程描述的方法, 以确定胰岛微血管血管舒在体内提供这里。然后, 将在代表性结果中显示典型的度量值。最后, 在讨论中突出显示方法的优点和限制, 以及进一步的应用程序。

Protocol

所有动物实验都是按照所有相关的指导方针、法规和监管机构执行的。目前正在示范的这项议定书是在北京协和医学院 (PUMC) 的微循环动物伦理委员会 (IMAEC) 的指导和批准下进行的。 1. 动物 实验开始前, 在 5%-小时的光暗循环下, 保持每笼三 BALB 小鼠, 控制温度 (24 1 摄氏度) 和湿度 (55 @ 12)。允许老鼠免费获得正常的食物和水。 将小鼠随机分为非糖尿病对照组和糖…

Representative Results

在图 1A中显示了配备半导体激光二极管的微血管血管舒缩测量激光多普勒装置的照片。用户界面软件显示在图 1B中。采用上述方法, 对非糖尿病对照和糖尿病小鼠胰岛微血管血管舒缩的血流动力学参数进行检测。许多技术, 包括激光多普勒血流仪, 反射和散射光, 红外光谱和成像技术, 已被用来研究微血管血管舒缩, 因为它是首次?…

Discussion

在涉及微血管功能障碍的病例中 (例如,糖尿病、急性胰腺炎、周围微血管疾病、), 一些疾病导致血流减少。除了血液流动的变化, 还有重要的指标, 如微血管血管舒缩, 反映微循环的功能状态。具体指标, 微血管血管舒缩, 一般被定义为微血管的音调在微血管床上的振荡。在本协议中, 微血管血流灌注监测系统允许对微血管血管舒缩的功能状态进行直接的可视化和定量分析。我们的微?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了北京协和医学院青年基金和中央大学基础研究基金的资助 (3332015200 号赠款)。

Materials

MoorVMS-LDF2 Moor Instruments GI80 PeriFlux 5000 (Perimed Inc.) can be used as an alternative apparatus to harvest data
MoorVMS-PC Software Moor Instruments GI80-1 Software of MoorVMS-LDF2
Calibration stand Moor Instruments GI-cal Calibration tool
Calibration base Moor Instruments GI-cal Calibration tool
Calibration flux standard Moor Instruments GI-cal Calibration tool
One Touch UltraEasy glucometer Johnson and Johnson #1955685 Confirm hyperglycemia
One Touch UltraEasy strips Johnson and Johnson #1297006 Confirm hyperglycemia
Streptozotocin Sigma-Aldrich S0130 Dissolve in sodium citrate buffer (pH 4.3)
Pentobarbital sodium Sigma-Aldrich P3761 Working concentration 3 %
Ethanol Sinopharm Inc. 200121 Working concentration 75 %
Sucrose Amresco 335 Working concentration 10 %
Medical gauze China Health Materials Co. S-7112 Surgical
Blunt-nose forceps Shang Hai Surgical Instruments Inc. N-551 Surgical
Surgical tapes 3M Company 3664CU Surgical
Gauze sponge Fu Kang Sen Medical Device CO. BB5447 Surgical
Scalpel Yu Lin Surgical Instruments Inc. 175C Surgical
Skin scissor Carent 255-17 Surgical
Suture Ning Bo Surgical Instruments Inc. 3325-77 Surgical
Syringe and 25-G needle MISAWA Inc. 3731-2011 Scale: 1 ml

Riferimenti

  1. Aalkjaer, C., Nilsson, H. Vasomotion: cellular background for the oscillator and for the synchronization of smooth muscle cells. Br J Pharmacol. 144 (5), 605-616 (2005).
  2. Serne, E. H., de Jongh, R. T., Eringa, E. C., IJzerman, R. G., Stehouwer, C. D. Microvascular dysfunction: a potential pathophysiological role in the metabolic syndrome. Hypertension. 50 (1), 204-211 (2007).
  3. Carmines, P. K. Mechanisms of renal microvascular dysfunction in type 1 diabetes: potential contribution to end organ damage. Curr Vasc Pharmacol. 12 (6), 781-787 (2014).
  4. Holowatz, L. A. Human cutaneous microvascular ageing: potential insights into underlying physiological mechanisms of endothelial function and dysfunction. J Physiol. 586 (14), 3301 (2008).
  5. De Boer, M. P., et al. Microvascular dysfunction: a potential mechanism in the pathogenesis of obesity-associated insulin resistance and hypertension. Microcirculation. 19 (1), 5-18 (2012).
  6. Nilsson, G. E., Tenland, T., Oberg, P. A. Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow. IEEE Trans Biomed Eng. 27 (10), 597-604 (1980).
  7. Chen, D., et al. Relationship between the blood perfusion values determined by laser speckle imaging and laser Doppler imaging in normal skin and port wine stains. Photodiagnosis Photodyn Ther. 13 (1), 1-9 (2016).
  8. Fuchs, D., Dupon, P. P., Schaap, L. A., Draijer, R. The association between diabetes and dermal microvascular dysfunction non-invasively assessed by laser Doppler with local thermal hyperemia: a systematic review with meta-analysis. Cardiovasc Diabetol. 16 (1), 11-22 (2017).
  9. Yaginuma, N., Takahashi, T., Saito, K., Kyoguku, M. The microvasculature of the human pancreas and its relation to Langerhans islets and lobules. Pathol Res Pract. 181 (1), 77-84 (1986).
  10. Brissova, M., et al. Islet microenvironment, modulated by vascular endothelial growth factor-A signaling, promotes beta cell regeneration. Cell Metab. 19 (3), 498-511 (2014).
  11. de Moraes, R., Van Bavel, D., Gomes Mde, B., Tibirica, E. Effects of non-supervised low intensity aerobic excise training on the microvascular endothelial function of patients with type 1 diabetes: a non-pharmacological interventional study. BMC Cardiovasc Disord. 16 (1), 23-31 (2016).
  12. Humeau-Heurtier, A., Guerreschi, E., Abraham, P., Mahe, G. Relevance of laser Doppler and laser speckle techniques for assessing vascular function: state of the art and future trends. IEEE Trans Biomed Eng. 60 (3), 659-666 (2013).
  13. Park, H. S., Yun, H. M., Jung, I. M., Lee, T. Role of Laser Doppler for the Evaluation of Pedal Microcirculatory Function in Diabetic Neuropathy Patients. Microcirculation. 23 (1), 44-52 (2016).
  14. Sun, P. C., et al. Microcirculatory vasomotor changes are associated with severity of peripheral neuropathy in patients with type 2 diabetes. Diab Vasc Dis Res. 10 (3), 270-276 (2013).
  15. Pan, Y., et al. Effects of PEMF on microcirculation and angiogenesis in a model of acute hindlimb ischemia in diabetic rats. Bioelectromagnetics. 34 (3), 180-188 (2013).
  16. Jumar, A., et al. Early Signs of End-Organ Damage in Retinal Arterioles in Patients with Type 2 Diabetes Compared to Hypertensive Patients. Microcirculation. 23 (6), 447-455 (2016).
  17. Nguyen, H. T., et al. Retinal blood flow is increased in type 1 diabetes mellitus patients with advanced stages of retinopathy. BMC Endocr Disord. 16 (1), 25-33 (2016).
  18. Forst, T., et al. Retinal Microcirculation in Type 1 Diabetic Patients With and Without Peripheral Sensory Neuropathy. J Diabetes Sci Technol. 8 (2), 356-361 (2014).
  19. Hu, H. F., Hsiu, H., Sung, C. J., Lee, C. H. Combining laser-Doppler flowmetry measurements with spectral analysis to study different microcirculatory effects in human prediabetic and diabetic subjects. Lasers Med Sci. 31 (1), 1-8 (2016).
  20. Klonizakis, M., Manning, G., Lingam, K., Donnelly, R., Yeung, J. M. Effect of diabetes on the cutaneous microcirculation of the feet in patients with intermittent claudication. Clin Hemorheol Microcirc. 61 (3), 439-444 (2015).
  21. Khazraei, H., Shafa, M., Mirkhani, H. Effect of ranolazine on cardiac microcirculation in normal and diabetic rats. Acta Physiol Hung. 101 (3), 301-308 (2014).
  22. Fujita, T., et al. Increased inner ear susceptibility to noise injury in mice with streptozotocin-induced diabetes. Diabetes. 61 (11), 2980-2986 (2012).
  23. Wiernsperger, N., Nivoit, P., De Aguiar, L. G., Bouskela, E. Microcirculation and the metabolic syndrome. Microcirculation. 14 (4-5), 403-438 (2007).
  24. Chawla, L. S., et al. Vascular content, tone, integrity, and haemodynamics for guiding fluid therapy: a conceptual approach. Br J Anaesth. 113 (5), 748-755 (2014).
check_url/it/56028?article_type=t

Play Video

Citazione di questo articolo
Liu, M., Zhang, X., Li, B., Wang, B., Wu, Q., Shang, F., Li, A., Li, H., Xiu, R. Laser Doppler: A Tool for Measuring Pancreatic Islet Microvascular Vasomotion In Vivo. J. Vis. Exp. (133), e56028, doi:10.3791/56028 (2018).

View Video