Summary

马达加斯加嘘声蟑螂作为非哺乳动物的替代动物模型来研究毒力、致病机制和药效

Published: November 24, 2017
doi:

Summary

我们提出了一项协议, 利用马达加斯加嘶咝蟑螂作为替代哺乳动物模型, 以进行细菌的毒力, 发病机制, 药物毒性, 药物功效, 和先天免疫反应研究。

Abstract

在哺乳动物和昆虫之间, 先天免疫的许多方面都是守恒的。一只昆虫, 马达加斯加咝嘶蟑螂从Gromphadorhina,可以作为一个替代动物模型, 研究的毒力, 宿主-病原体相互作用, 先天免疫反应, 和药物的功效。提供的细节为饲养, 关心和饲养的嘘声蟑螂。我们还说明了它如何感染细菌, 如胞内病原体霍尔德鼻疽, b. 鼻疽和 b. thailandensis。使用嘶咝的蟑螂是不贵的, 并克服了在研究中使用哺乳动物的管理问题。此外, 使用嘶咝蟑螂模型发现的结果是可重现的, 类似于使用哺乳动物模型获得。因此, 马达加斯加的嘘声蟑螂代表了一个有吸引力的代理主机, 应该探索时进行动物研究。

Introduction

近年来, 利用昆虫作为替代哺乳动物模型来研究细菌病机和先天宿主防御的作用已经越来越强劲。从后勤上来说, 这是由于他们相对低廉的成本和容易获得, 处理和照顾昆虫与哺乳动物相比。此外, 亦没有规管在研究中使用昆虫的政策;它不受任何动物使用委员会或政府机构规定的权限或限制的约束。昆虫作为替代动物模型特别适合于对毒力因子、宿主-病原体相互作用以及抗微生物药物功效的评估进行全面筛选研究。它们的使用可以减少用于研究的哺乳动物的数量从而克服动物实验行为所固有的一些伦理难题1,2

昆虫可以充当替代宿主, 因为昆虫和哺乳动物的先天免疫系统之间有高度的共同性1,3。昆虫 plasmatocytes 和哺乳动物巨噬细胞吞噬微生物4。与中性粒细胞的昆虫对应的是血5,6。昆虫和哺乳动物细胞的胞内氧化爆裂通路相似;活性氧在这两种生产的同源 p47phox和 p67phox蛋白质5。在昆虫和 toll 样受体和 Interleukin-1 中, 在哺乳动物的收费受体下游的信号瀑布也非常相似;这两种结果都产生抗菌肽, 如防御7。因此, 昆虫可以用来研究一般的先天免疫机制, 共享的后生。

一种名叫马达加斯加的昆虫, 来自于Gromphadorhina,是现存最大的蟑螂物种之一, 在成熟时通常达到5到8厘米。它只原产于马达加斯加的岛屿, 其特征是发出咝嘶声–发出嘶咝的蟑螂通过呼吸口排出空气的声音, 称为气孔8。独特的嘘声充当一种社会通信的形式在嘶咝的蟑螂之间为求爱和攻击9 , 并且可以听见 , 当一个男性在它的栖所扰。与美国蟑螂和其他城市害虫相比, 马达加斯加的嘶咝蟑螂的移动速度很慢。它是容易照料和养殖;一只怀孕的臭蟑螂每次能生20到30个孩子。一只名叫若虫的婴儿, 在经历 6 molts 后的5月内达到性成熟, 并且在野外和圈养的5年中都可以存活8

我们已利用马达加斯加嘶咝蟑螂作为代理主机感染与胞内病原体霍尔德鼻疽, b. 鼻疽, 和B. thailandensis 10,11.这些病原体的毒力与它们的毒力相比, 在霍尔德的基准动物模型, 叙利亚仓鼠。我们发现, 50% 致命剂量 (LD50) 的b. 鼻疽b. 鼻疽在两个模型中都是相似的11。有趣的是, B. thailandensis,虽然无毒在啮齿目动物模型中, 是致命的在嘶咝蟑螂11。与B. thailandensis感染有关的这种差异突出说明了嘶咝蟑螂模型的效用;B. thailandensis衰减突变体可以更容易地解决在嘶咝蟑螂比啮齿动物模型。此外, 由于b. thailandensis通常用作b. 鼻疽b. 鼻疽 101213的模型有机体, 因此可以识别衰减突变。在其毒性更强的亲属中导致类似的目标。

尽管thailandensis的毒力与叙利亚仓鼠的毒性不同, 但在严重毒力因子, 如6型分泌 system-1 (T6SS-1) 的突变, 在b. 鼻疽B. 鼻疽, 同样为 B. thailandensis 11而衰减。在该 T6SS 突变体 (T6SS-2 到 T6SS-6), 在B. 鼻疽中, 对叙利亚仓鼠的毒力没有任何影响, 在嘶蟑螂11中仍然有剧毒。因此, 嘶咝蟑螂是一个可行的替代动物模型为三霍尔德物种。最近, 我们利用嘶咝蟑螂作为替代动物模型, 研究抗疟药物氯喹 (CLQ) 对霍尔德感染10的有效性及其毒性。

在这里, 我们描述的饲养和照顾的马达加斯加嘶咝蟑螂, 并提供有关如何感染这种昆虫与三霍尔德物种的细节。此外, 我们说明, 嘶咝蟑螂是一个可行的替代模型, 研究毒力和药物的有效性, 在霍尔德感染, 它可能也可以作为替代宿主的其他细菌病原体在类似的研究。

Protocol

1. 为维持一只嘘蟑螂蚁群作准备 准备笼子里的嘶咝蟑螂住。应用一层薄薄的石油果冻, 大约20到30毫米宽, 到靠近笼子顶部的内壁的圆周, 以防止嘶咝的蟑螂从笼中爬出并逃逸。注: 嘶咝的蟑螂可以安置在有大面积、足够高、有盖子的各种容器中。使用鼠标笼 (〜43厘米 x 23 厘米 x 20 厘米)。对于运往37° c 的笼子, 不要使用凡士林。 在笼子里放一把纸板蛋纸盒, 为自然害羞的昆虫提供?…

Representative Results

本节说明了当马达加斯加的蟑螂被b. 鼻疽、b. 鼻疽、或b thailandensis感染时所取得的结果;结果表明, 该昆虫是一种适合于不同种类的霍尔德的动物模型, 用于研究毒力、药物毒性和细菌感染的药效。在感染了减毒突变体 (Δhcp1) 的组中, 比在感染野生b 鼻疽K96243、父母b . 鼻疽 SR1 或b. thailandensis DW503 (图 1)。反…

Discussion

最佳的实验条件始于一个健康的嘶咝蟑螂殖民地, 这需要一个最小的, 但一致的时间承诺。虽然嘶咝的蟑螂可以在一段较长的时间 (〜周) 没有食物和水, 每周或双周的笼子维护必须提供。这包括检查食物和水的供应, 确保笼子是干的。在高温的驯化和孵化过程中, 保持干燥的生活条件尤为重要;我们发现, 更多的嘘声蟑螂死亡, 并在更高的速度在较高的温度下, 容器没有每天清洗。

<p class="jove_content"…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

蔡、费希尔、DeShazer 和上午弗里德兰德设计了手稿中描述的程序。蔡、费希尔、法令 Falcinelli 和 DeShazer 进行了实验。蔡写了手稿。

作者感谢约书 j.w 罗恩, 诺拉 d. 多伊尔, 尼古拉斯 r. 卡特和史蒂芬 a. Tobery 为优秀的技术援助和大卫 p. Fetterer 和史蒂芬 j. 科恩进行统计分析。

这项工作得到了国防减少威胁局的建议, #CBCALL12 THRB1-1-0270 到上午 F 和 #CBS。MEDBIO 02.10 号路034至博士

意见、解释、结论和建议都是作者的观点, 并不一定得到美国陆军的认可。

本出版物的内容不一定反映国防部的意见或政策, 也不提及贸易名称、商业产品或组织意味着美国政府的认可。

Materials

Madagascar hissing cockroach
  
 
 
 
Carolina Biological Supply Co, Burlington, NC  143668
Kibbles n Bits, any flavor Big Heart Pet Brands, San Francisco, CA UPC #079100519378
Snap on disposable plastic containers or equivalent Rubbermaid, Huntersville, NC UPC #FG7F71RETCHIL
Screw on disposable plastic containers or equivalent Rubbermaid, Huntersville, NC UPC #FG7J0000TCHIL
Tridak STEPPER series repetitive pipette Dymax Corporation
www.dymax.com
T15469
Syringe (1 mL)  Becton Dickinson, Franklin Lakes, NJ 309659
Needle (26 or 27G x 1/2) Becton Dickinson, Franklin Lakes, NJ 305109, 305111
Chloroquine diphosphate Sigma-Aldrich, St. Louis, MO C6628
Phosphate buffered saline Gibco/ Thermo Fisher Scientific, Gaithersburg, MD 10010023
Difco Luria- Bertani (Lennox) Becton Dickinson, Sparks, MD 240230
Agar  Sigma-Aldrich, St. Louis, MO A1296
Glycerol Sigma-Aldrich, St. Louis, MO G6279

Riferimenti

  1. Sifri, C. D., Ausubel, F. M., Boquet, P., Cossart, P., Normark, S., Rappuoli, R. . Cellular Microbiology. , 543-563 (2004).
  2. Silcock, S. Is your experiment really necessary?. New Sci. 134 (1817), 32-34 (1992).
  3. Muller, U., Vogel, P., Alber, G., Schaub, G. A. The innate immune system of mammals and insects. Contrib Microbiol. 15, 21-44 (2008).
  4. Lavine, M. D., Strand, M. R. Insect hemocytes and their role in immunity. Insect Biochem Mol Biol. 32 (10), 1295-1309 (2002).
  5. Bergin, D., Reeves, E. P., Renwick, J., Wientjes, F. B., Kavanagh, K. Superoxide production in Galleria mellonella hemocytes: identification of proteins homologous to the NADPH oxidase complex of human neutrophils. Infect Immun. 73 (7), 4161-4170 (2005).
  6. Browne, N., Heelan, M., Kavanagh, K. An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence. 4 (7), 597-603 (2013).
  7. Lemaitre, B., Hoffmann, J. The host defense of Drosophila melanogaster. Annu Rev Immunol. 25, 697-743 (2007).
  8. Mulder, P. G., Shufran, A. Madagascar hissing cockroaches, information and care. Oklahoma Cooperative Extension Service Leaflet L-278. , 4 (2016).
  9. Nelson, M. C., Fraser, J. Sound production in the cockroach, Gromphadorhina portentosa: Evidence for communication by hissing. Behav Ecol Sociobiol. 6 (4), 305-314 (1980).
  10. Chua, J., et al. pH Alkalinization by Chloroquine Suppresses Pathogenic Burkholderia Type 6 Secretion System 1 and Multinucleated Giant Cells. Infect Immun. 85 (1), e0058616 (2017).
  11. Fisher, N. A., Ribot, W. J., Applefeld, W., DeShazer, D. The Madagascar hissing cockroach as a novel surrogate host for Burkholderia pseudomallei, B. mallei and B. thailandensis. BMC Microbiol. 12, 117 (2012).
  12. Haraga, A., West, T. E., Brittnacher, M. J., Skerrett, S. J., Miller, S. I. Burkholderia thailandensis as a model system for the study of the virulence-associated type III secretion system of Burkholderia pseudomallei. Infect Immun. 76 (11), 5402-5411 (2008).
  13. West, T. E., Frevert, C. W., Liggitt, H. D., Skerrett, S. J. Inhalation of Burkholderia thailandensis results in lethal necrotizing pneumonia in mice: a surrogate model for pneumonic melioidosis. Trans R Soc Trop Med Hyg. 102 Suppl 1, S119-S126 (2008).
  14. Finney, D. J. . Probit Analysis. , (1971).
  15. Abbott, W. S. A method of computing the effectiveness of an insecticide. J Am Mosq Control Assoc. 3 (2), 302-303 (1987).
  16. Schell, M. A., Lipscomb, L., DeShazer, D. Comparative genomics and an insect model rapidly identify novel virulence genes of Burkholderia mallei. J Bacteriol. 190 (7), 2306-2313 (2008).
  17. Wand, M. E., Muller, C. M., Titball, R. W., Michell, S. L. Macrophage and Galleria mellonella infection models reflect the virulence of naturally occurring isolates of B. pseudomallei, B. thailandensis and B. oklahomensis. BMC Microbiol. 11 (1), 11 (2011).
  18. Pilatova, M., Dionne, M. S. Burkholderia thailandensis is virulent in Drosophila melanogaster. PLoS One. 7 (11), e49745 (2012).
  19. Ramarao, N., Nielsen-Leroux, C., Lereclus, D. The insect Galleria mellonella as a powerful infection model to investigate bacterial pathogenesis. J Vis Exp. (70), e4392 (2012).
  20. Eklund, B. E., et al. The orange spotted cockroach (Blaptica dubia, Serville 1839) is a permissive experimental host for Francisella tularensis. PeerJ Preprints. 4, e1524v1522 (2016).
check_url/it/56491?article_type=t

Play Video

Citazione di questo articolo
Chua, J., Fisher, N. A., Falcinelli, S. D., DeShazer, D., Friedlander, A. M. The Madagascar Hissing Cockroach as an Alternative Non-mammalian Animal Model to Investigate Virulence, Pathogenesis, and Drug Efficacy. J. Vis. Exp. (129), e56491, doi:10.3791/56491 (2017).

View Video