Summary

环境毒物暴露大鼠下颌切牙釉质器官的显微解剖

Published: March 29, 2018
doi:

Summary

了解搪瓷的形成和可能的改变需要研究成釉细胞活动。在这里, 我们描述了一个可靠和一致的方法, 显微解剖搪瓷器官含有分泌物和成熟阶段成釉细胞, 可用于进一步定量和定性实验程序。

Abstract

由于环境条件和生活方式造成的搪瓷缺陷是公共卫生关注的问题, 因为它们的发病率很高。这些缺陷是由负责搪瓷合成的细胞的活性改变所造成的, 成釉细胞是在搪瓷器官中存在的。在 amelogenesis 期间, 成釉细胞遵循一个特定的和精确的序列的事件的扩散, 分化和死亡。大鼠不断生长的门牙是研究成釉细胞活性和分化阶段的一种适宜的实验模型。在这里, 我们描述了一个可靠和一致的方法, 对暴露于环境毒物的大鼠的牙釉质器官进行显微解剖。微解剖的牙科上皮含有分泌物和成熟阶段的成釉细胞, 可用于定性实验, 如免疫组化分析原位杂交, 以及定量分析, 如qPCR, RNA 序列, 和西方印迹。

Introduction

许多发展中的搪瓷缺陷可能是由于暴露于环境毒物和/或不适当的生活方式1,2,3,4。使用目前所描述的程序来破坏 amelogenesis 事件和分子的特性, 将促进使用由此产生的搪瓷缺陷, 作为暴露于几种毒物的早期标记, 并有助于重建健康史。每个病人在围产期期间, 搪瓷是综合升华 1, 2.搪瓷合成可分为四个主要阶段, 取决于成釉细胞活动5。第一步重整旗鼓前体细胞和成釉细胞的增殖。在第二步, 分化成釉细胞分泌搪瓷基质蛋白 (EMPs), 主要釉原蛋白, 釉蛋白和 ameloblastin, 这决定了最终搪瓷的厚度。因此, 电磁脉冲合成的任何干扰都会导致搪瓷的数量缺陷。在充分的搪瓷厚度的沉积以后, 成熟阶段开始。在这个阶段, 磷灰石微晶生长的宽度和厚度, 使搪瓷达到最高的矿化比发现在一个生物组织, 多达96% 的重量。破坏在成熟阶段发生的事件导致质量搪瓷缺陷。最后, 成釉细胞进入成熟后的阶段, 也称为啮齿动物的色素沉着, 在牙齿喷发过程中发生凋亡, 使搪瓷缺损 (如有) 无法挽回和不可逆转, 因此缺陷提供了潜在的回顾性记录。成釉细胞强调。在啮齿类动物中, amelogenesis 遵循类似的事件序列, 其门牙的特殊性不断增加, 这使得它们成为研究 amelogenesis 一般过程的合适模型。因此, amelogenesis 的任何中断都会导致搪瓷质量和/或数量的改变, 这取决于中断事件的时间窗口。在这个意义上, 暴露于二恶英, 铅和内分泌干扰化学品 (EDCs), 如双酚 a (BPA), 染料木黄酮和 vinclozolin, 已被证明生成搪瓷 hypomineralizations1,2,3 ,6,7,8。在胎儿期和出生后的第一个月内, 在低剂量 BPA 剂量的大鼠的门牙上发现不对称的白色不透明斑点1。这些搪瓷缺陷的大鼠, 以及人磨牙切牙 hypomineralization (MIH), 具有相似的临床, 结构, 和生物化学的特点。MIH 是最近被描述的牙釉质病理学, 病因仍然是不明的9,10尽管许多原因因素被假设了9,10,11 ,12

另一重要的搪瓷 hypomineralization 病理由于环境因素是牙氟中毒 (DF), 这是由于过量氟化物吸收 (> 0.1 毫克/千克/天)13,14。氟化物的主要来源是饮用的水, 补充或自然富含氟化物。氟化物也经常被规定防止龋齿, 但预防剂量仅比毒性的50% 低 (≤0.05 毫克/公斤/天)。MIH 和 DF, 由于暴露于环境因素而引起的两个常见的病症, 可能呈现出共同的特征, 因为氟化物与其他有毒物质 (如 EDCs2 ) 的 hypomineralizing 效应增强, 因此需要加以表征。或阿莫西林15

在不同分化阶段对成釉细胞的大鼠釉质器官进行显微解剖, 有助于了解分子的作用机制, 能够扰乱成釉细胞活性, 导致牙釉质缺损在牙齿喷发后确诊。换言之, 由于环境毒物的影响, 搪瓷基因表达的变化和搪瓷基质成分的改变, 使暴露于毒物的历史得以重建, 并促进对公众的环境安全监测。健康.

Protocol

在本研究中使用的所有动物都是按照法国农业部 (A-75-06-12) 的护理和使用实验动物的指导方针维持的。 1. 动物接触毒物 在执行本议定书之前, 获得必要的机构批准, 并确保遵守所有动物护理指南。 应用研究协议的设计, 允许不同实验组的组成, 以测试分子对成釉细胞分泌期和成釉细胞成熟期的影响。在这里, 四组雄性大鼠的组成取决于他们接触氟化物 (NaF) 组合或…

Representative Results

许多搪瓷缺陷, 如牙科氟中毒12,13, 可能是由于环境条件由于过量氟化物吸收或搪瓷 hypomineralization 类似 MIH 由于暴露在一些 EDCs1, 7,22。这些发育的搪瓷缺陷可在大鼠身上进行实验复制 (图 1)1,2<s…

Discussion

改变成釉细胞活动和/或扰乱成釉细胞的扩散, 分化和成熟过程导致不可逆的搪瓷缺陷, 反过来, 搪瓷缺陷的表征可能有助于发展对改变的理解成釉细胞活动在 amelogenesis 期间。因此, 对分离的搪瓷器官的研究是决定其起源、环境或遗传的病理事件的决定性因素。

此技术最初是由希勒et描述的。17和罗宾逊et18, 用于显示对搪瓷器?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作由巴黎狄德罗大学、法国国立卫生和医学研究研究所 (INSERM) 和法国牙科医生研究所 (IFRO) 资助。

Materials

Bisphenol A Sigma Aldrich, Saint Louis MO 239658
formalin 10% Sigma-Aldrich, Saint Louis, MO HT5012
Tri-Reagent Euromedex, France TR118
RLT buffer Qiagen, Les Ulis, France 74126 RNeasy Protect Mini Kit
Androgen receptor antibody Santa Cruz Biotechnology, Santa Cruz, CA) sc-816 rabbit polyclonal antibody
PBS 10x EUOMEDEX ET330.A
Sodium fluoride (NaF) Sigma-Aldrich, Saint Louis, MO S-1504
paraplast regular Leica microsystems, Nanterre cedex, France 39601006 called was/parafin in the text
tissue OCT VWR, Fontenay-sous-Bois, France 411243
Extra Fine Bonn Scissors – Straight/8.5 cm PHYMEP , Paris, France 14084-08
Handle for Scalpel Blades – 12.5 cm PHYMEP, Paris, France 10035-12
Curved Scalpel Blade PHYMEP , Paris, France 10035-20
Dissecting Knife – Fine/Straight Tip PHYMEP , Paris, France 10055-12
Circle Knife PHYMEP, Paris, France 10059-15
scalpel blades n°11 Swann-Morton VWR, Fontenay-sous-Bois, France 233-0024
binocular lens Leica biosystems, Nanterre cedex, France MZFLIII

Riferimenti

  1. Jedeon, K., et al. Enamel defects reflect perinatal exposure to bisphenol A. Am J Pathol. 183, 108-118 (2013).
  2. Jedeon, K., et al. Chronic Exposure to Bisphenol a Exacerbates Dental Fluorosis in Growing Rats. J Bone Miner Res. 31, 1955-1966 (2016).
  3. Alaluusua, S., et al. Developmental dental aberrations after the dioxin accident in Seveso. Environ Health Perspect. 112, 1313-1318 (2004).
  4. Chapple, I. L., et al. Interaction of lifestyle, behaviour or systemic diseases with dental caries and periodontal diseases: consensus report of group 2 of the joint EFP/ORCA workshop on the boundaries between caries and periodontal diseases. J Clin Periodontol. 44, S39-S51 (2017).
  5. Nanci, A. Enamel: Composition, Formation, and Structure. Ten Cate’s Oral Histology Development, Structure, and Function. , 122-164 (2012).
  6. Leite, G. A., Sawan, R. M., Teofilo, J. M., Porto, I. M., Sousa, F. B., Gerlach, R. F. Exposure to lead exacerbates dental fluorosis. Arch Oral Biol. 56, 695-702 (2011).
  7. Jedeon, K., et al. Enamel hypomineralization due to endocrine disruptors. Connect Tiss Res. 55, 1-5 (2014).
  8. Jedeon, K., et al. Androgen receptor involvement in rat amelogenesis: an additional way for endocrine disrupting chemicals to affect enamel synthesis. Endocrinology. 157, 4287-4296 (2016).
  9. Weerheijm, K. L., Jalevik, B., Alaluusua, S. Molar-incisor hypomineralisation. Caries Res. 35, 390-391 (2001).
  10. Jälevik, B. Prevalence and Diagnosis of Molar-Incisor- Hypomineralisation (MIH): A systematic review. Eur Arch Paediatr Dent. 11, 59-64 (2010).
  11. Alaluusua, S. Aetiology of Molar-Incisor Hypomineralisation: A systematic review. Eur Arch Paediatr Dent. 11, 53-58 (2010).
  12. Jedeon, K., Berdal, A., Babajko, S., Gibert, Y. The tooth, target organ of Bisphenol A, could be used as a biomarker of exposure to this agent. Bisphenol A: Sources, Risks of Environmental Exposure and Human Health Effects. , 205-225 (2015).
  13. Fejerskov, O., Larsen, M. J., Richards, A., Baelum, V. Dental tissue effects of fluoride. Adv Dent Res. 8, 15-31 (1994).
  14. Robinson, C., Connell, S., Kirkham, J., Brookes, S. J., Shore, R. C., Smith, A. M. The effect of fluoride on the developing tooth. Caries Res. 38, 268-276 (2004).
  15. Sahlberg, C., Pavlic, A., Ess, A., Lukinmaa, P. L., Salmela, E., Alaluusua, S. Combined effect of amoxicillin and sodium fluoride on the structure of developing mouse enamel in vitro. Arch Oral Biol. 58, 1155-1164 (2013).
  16. Pritchett-Corning, K. R. Euthanasia of neonatal rats with carbon dioxide. J Am Assoc Lab Anim Sci. 48, 23-27 (2009).
  17. Hiller, C. R., Robinson, C., Weatherell, J. A. Variations in the composition of developing rat incisor enamel. Calcif Tissue Res. 18, 1-12 (1975).
  18. Robinson, C., Kirkham, J., Nutman, C. A. Relationship between enamel formation and eruption rate in rat mandibular incisors. Cell Tissue Res. 254, 655-658 (1988).
  19. Smith, C. E., Nanci, A. A method for sampling the stages of amelogenesis on mandibular rat incisors using the molars as a reference for dissection. Anat Rec. 225, 257-266 (1989).
  20. Chavez, M. G., et al. Isolation and culture of dental epithelial stem cells from the adult mouse incisor. J Vis Exp. (87), (2014).
  21. Brookes, S. J., Kingswell, N. J., Barron, M. J., Dixon, M. J., Kirkham, J. Is the 32-kDa fragment the functional enamelin unit in all species?. Eur J Oral Sci. 119, 345-350 (2011).
  22. Babajko, S., Jedeon, K., Houari, S., Loiodice, S., Berdal, A. Disruption of Steroid Axis, a New Paradigm for Molar Incisor Hypomineralization (MIH). Front Physiol. 8, 343 (2017).
  23. Houari, S., et al. Asporin and the mineralization process in fluoride-treated rats. J Bone Min Res. 29, 1446-1455 (2014).
  24. Denbesten, P., Li, W. Chronic fluoride toxicity: dental fluorosis. Monographs in oral science. 22, 81-96 (2011).
  25. Kirkham, J., Robinson, C., Phull, J. K., Shore, R. C., Moxham, B. J., Berkovitz, B. K. The effect of rate of eruption on periodontal ligament glycosylaminoglycan content and enamel formation in the rat incisor. Cell Tissue Res. 274, 413-419 (1993).
  26. Lacruz, R. S., et al. Identification of novel candidate genes involved in mineralization of dental enamel by genome-wide transcript profiling. J Cell Physiol. 227, 2264-2275 (2012).
  27. Wen, X., Paine, M. L. Iron deposition and ferritin heavy chain (Fth) localization in rodent teeth. BMC research notes. 6, 1 (2013).
  28. Houari, S., Loiodice, S., Jedeon, K., Berdal, A., Babajko, S. Expression of Steroid Receptors in Ameloblasts during Amelogenesis in Rat Incisors. Front Physiol. 7, 503 (2016).
  29. Kawano, S., et al. Establishment of dental epithelial cell line (HAT-7) and the cell differentiation dependent on Notch signaling pathway. Connect Tissue Res. 43, 409-412 (2002).
  30. Zhou, Y. L., Snead, M. L. Identification of CCAAT/enhancer-binding protein alpha as a transactivator of the mouse amelogenin gene. J Biol Chem. 275, 12273-12280 (2000).
  31. Nakata, A., et al. Establishment and characterization of a spontaneously immortalized mouse ameloblast-lineage cell line. Biochem Biophys Res Commun. 308, 834-839 (2003).
  32. Harada, H., et al. Establishment of ameloblastoma cell line, AM-1. Journal of oral pathology & medicine: official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology. 27, 207-212 (1998).
  33. Jussila, M., Thesleff, I. Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineages. Cold Spring Harb Perspect Biol. 4, a008425 (2012).
  34. Tucker, A., Sharpe, P. The cutting-edge of mammalian development; how the embryo makes teeth. Nat Rev Genet. 5, 499-508 (2004).
  35. Vos, T., et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 380, 2163-2196 (2012).
  36. Marcenes, W., et al. Global burden of oral conditions in 1990-2010: a systematic analysis. J Dent Res. 92, 592-597 (2013).
  37. . Dental Caries (Tooth Decay) in Adults (Age 20 to 64) Available from: https://www.nidcr.nih.gov/DataStatistics/FindDataByTopic/DentalCaries/DentalCariesAdults20to64.htm (2017)
check_url/it/57081?article_type=t

Play Video

Citazione di questo articolo
Houari, S., Babajko, S., Loiodice, S., Berdal, A., Jedeon, K. Micro-dissection of Enamel Organ from Mandibular Incisor of Rats Exposed to Environmental Toxicants. J. Vis. Exp. (133), e57081, doi:10.3791/57081 (2018).

View Video