Summary

从层流到湍流条件下的规则基底表面初始粒子运动的可视化表征

Published: February 22, 2018
doi:

Summary

提出了两种不同的方法来表征单个珠的初始粒子运动, 即从层流到湍流的沉积床几何函数。

Abstract

本文提出了两种不同的实验方法来确定粒子运动的阈值, 作为从层流到紊流条件下的床的几何性质的函数。为此, 在规则基板上研究了单个珠的起动运动, 这些基体由均匀大小固定球体的单层组成, 它们定期排列在三角形和二次对称中。阈值以临界屏蔽数为特征。运动开始的判据被定义为从原来的平衡位置到相邻的位移。用成像系统识别位移和运动方式。层流是使用旋转流变仪与平行磁盘配置诱导。剪切雷诺数保持在1以下。采用开放射流试验剖面, 在低速风洞中诱导湍流流动。风机用变频器调节风速。速度剖面是用一个与热膜风速计连接的热导线探头来测量的。剪切雷诺数范围在40和150之间。利用罗塔所提出的对数速度定律和修正后的墙法, 从实验数据中推断出剪切速度。当移动珠部分暴露于所谓的水力过渡流体系中的湍流流动时, 后者是特别感兴趣的。剪切应力是在运动开始时估计的。结果表明, 在两种体制下, 静力角的影响很大, 而珠对剪切流的暴露也有代表性。

Introduction

初始粒子运动在广泛的工业和自然过程中遇到。环境例子包括河流和海洋中泥沙运输的初始过程、河床侵蚀或沙丘形成等其他1,2,3。气力输送4, 清除污染物或清洗表面5,6是典型的工业应用, 涉及粒子运动的开始。

由于广泛的应用, 粒子运动的开始已经被广泛研究了一个世纪, 主要是在湍流条件下7,8,9,10,11, 12,13,14,15。已有许多实验方法用于确定运动起始的阈值。研究内容包括粒子雷诺数131617181920、相对流淹没等参数。21,22,23,24或几何因素作为静止的角度16,18,25, 暴露于流26,27,28,29,相对谷物凸起29或流向床斜率30

包括湍流条件在内的阈值的当前数据大致分散1231 , 结果通常看起来不一致24。这主要是由于在湍流条件下控制或确定流参数的固有复杂性13,14。此外, 泥沙运动的阈值强烈取决于运动模式,滑动, 滚动或提升17和特征的初始运动31的标准。后者在侵蚀沉积床上可能不明确。

在过去十年中, 实验研究人员研究了层流流中的初始粒子运动32,33,34,35,36,37,38,39,40,41,42,43,44, 其中避免了与床交互的宽范围的长度刻度,45。在许多实际的情况下, 暗示沉淀, 粒子是相当小的, 粒子雷诺数保持低于约 546。另一方面, 层流可以产生像涟漪和沙丘一样的几何图案, 如湍流流做42,47。这两种方案中的班扬都反映了在基础物理47中的类比, 因此对粒子传输的重要洞察力可以从一个更好的受控实验系统48中获得。

在层流中, Charru et . 注意到, 均匀大小的珠子颗粒床的局部重排, 所谓的床装甲, 导致运动开始的门槛逐渐增加, 直到饱和条件达到32. 然而, 根据实验设置3644, 在不规则排列的沉积层中, 文献揭示了饱和条件的不同阈值。这种散射可能是由于对沉积物的定向、凸出层和致密性等粒子参数的控制困难所致。

本手稿的主要目的是详细描述如何将单个球体的起动作为水平沉积床几何性质的函数来刻画。为此, 我们使用常规几何, 由固定珠的单分子膜按照三角形或二次构型定期排列。类似于我们使用的常规衬底在微流控分析中的粒子模板组装 (49)、受限结构几何50或内部粒子诱导的 microdevices 的自组装等应用中发现。在微51中传输。更重要的是, 使用常规的衬底, 我们可以突出的影响, 地方几何和方向, 并避免任何 dubiety 的作用, 邻里。

在层流中, 我们观察到, 临界屏蔽数增加了 50%, 这取决于基体球体之间的间距, 从而使珠子暴露在流38上。类似地, 我们发现, 临界屏蔽号由两个因素所改变, 取决于基板的方向与流向38的方向。我们注意到, 不动的邻居只影响移动珠的开始, 如果他们比大约三粒径41。在实验结果的触发下, 我们最近提出了一个严格的分析模型, 可以预测爬行流限制40中的临界屏蔽数。该模型涵盖了从高暴露到隐藏珠的运动开始。

本手稿的第一部分论述了以往研究中所使用的剪切雷诺数的实验程序的描述, 再到1。层流是由旋转流变仪与平行配置引起的。在这个低雷诺数限制, 粒子不应该经历任何速度波动20和系统匹配所谓的水力平滑流, 其中粒子被淹没在粘性子层。

一旦形成层流的初始运动, 湍流的作用就会变得更加清晰。在这个想法的驱使下, 我们介绍了一个新的实验程序在第二部分的协议。采用开放射流试验段的哥廷根低速风洞, 可以在很大范围内确定临界屏蔽数, 包括水力过渡流和湍流体系。实验结果可以提供重要的洞察力和扭矩如何作用的粒子由于湍流流动取决于基体几何。此外, 这些结果可以作为一个基准, 为更复杂的模型在高 Re * 以类似的方式, 过去的工作在层流已经被用来养活半概率模型52或验证最近的数字模型53。我们提出一些典型的应用实例, 从40到150不等。

从初始平衡位置到下一粒子的运动, 建立了起始判据。图像处理用于确定运动开始的模式,滚动、滑动、提升3941。为此, 检测到手动标记的移动球体的旋转角度。该算法跟踪标记的位置, 并将其与球体的中心进行比较。在两个实验装置中进行了初步的实验, 阐明了临界屏蔽数与设置和相对流淹没的有限尺寸效应无关。实验方法的设计, 以排除任何其他参数依赖的关键盾号超越再 * 和几何性质的泥沙床。使用不同的流体-粒子组合来改变重复 *。临界屏蔽号的特征是埋葬程度的函数,, 由. Equation 01 37作为Equation 03 , Equation 02其中是养神的Equation 04角度,54的运动发生的临界角, 是曝光度, 定义为实际暴露于流中的横截面积的比值。移动珠的总横截面积。

Protocol

1. 初始粒子运动在爬行的流动极限。 注意: 测量是在旋转流变仪中进行的, 这是为这个特定的应用而修改的。 准备流变仪。 将空气供给与流变仪连接, 以避免损坏空气轴承。除空气过滤器外, 打开阀门, 直到系统中约5条的压力达到。 将流体循环器连接到测量板。确保珀尔半导体元件的软管连接到流变仪。打开流体循环器, 设定所需温度 (20 ?…

Representative Results

图 1(a)表示用于描述爬行流限制中的临界护盾编号的实验设置示意图, 该协议1节。测量是在旋转流变仪中进行的, 为这个特定的应用进行了修改。一个直径为70毫米的透明有机玻璃板被仔细地固定在直径为25毫米的平行板上。测量系统的惯性因此在测量之前被调整了。一个定制的圆形容器, 直径为176毫米, 具有透明的墙壁, 与流变仪同心耦合…

Discussion

我们提出了两种不同的实验方法来表征初始粒子运动作为沉积床几何的功能。为此, 我们使用一个由三角形或二次对称排列的球体的单层, 这种方法使几何参数简化为单个几何。在蠕变流量极限中, 我们描述了用旋转浮子诱导层流剪切流的实验方法, 如前研究39,40,41。初步实验表明, 初始运动保持独立于基底的有限尺寸效应, 如径?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

作者感谢未知的裁判为宝贵的意见, 并 Sukyung 崔, Byeongwoo 和 Baekkyoung 的合作, 建立实验。这项工作得到了21的大脑釜山项目在2017年。

Materials

MCR 302 Rotational Rheometer Antoon Par Induction of shear laminar flow
Measuring Plate PP25 Antoon Par Induction of shear laminar flow
Peltier System P-PTD 200 Antoon Par Keep temperature of silicon oils constant in the system at laminar flow
Silicone oils with viscosities of approx. 10 and 100 mPas Basildon Chemicals Fluid used to induced the shear in the particles
Soda-lime glass beads of (405.9 ± 8.7) μm The Technical Glass Company Construction of the regular substrates for laminar flow conditions
Opto Zoom 70 Module 0.3x-2.2x WEISS IMAGING AND SOLUTIONS GmbH Imaging system for recording the bead motion in the rheometer
2 x TV-Tube 1.0x, D=35 mm, L=146.5 mm WEISS IMAGING AND SOLUTIONS GmbH Imaging system for recording the bead motion in the rheometer
UI-1220SE CMOS Camera IDS Imaging Development Systems GmbH Imaging system for recording the bead motion in the rheometer
UI-3590CP CMOS Camera IDS Imaging Development Systems GmbH Imaging system for recording the bead motion in the rheometer
Volpi IntraLED 3 – LED light source  Volpi USA Imaging system for recording the bead motion in the rheometer
Active light guide diameter 5mm Volpi USA Imaging system for recording the bead motion in the rheometer
300 Watt Xenon Arc Lamp Newport Corporation Imaging system for recording the bead motion in the rheometer
Wind-tunnel with open jet test section, Göttingen type  Tintschl BioEnergie und Strömungstechnik AG Induction of turbulent flow
Glass spheres of (2.00 ± 0.10) mm Gloches South Korea Construction of the regular substrates for turbulent flow conditions
Alumina spheres of (5.00 ± 0.25) mm Gloches South Korea Targeted bead for experiments
CTA Anemometer DISA 55M01 Disa Elektronik A/S  Measurement of  flow velocity in the wind tunnel
Miniaure Wire Probe Type 55P15 Dantec Dynamics Measurement of  flow velocity in the wind tunnel
HMO2022 Digital Oscilloscope, 2 Analogue. Ch., 200MHz Rohde & Schwarz Measurement of  flow velocity in the wind tunnel
Phantom Miro eX1 High-speed Camera Vision Research IncVis Imaging system for recording the bead motion in the wind-tunnel
Canon ef 180mm f/3.5 l usm macro lens Canon Imaging system for recording the bead motion in the wind-tunnel
Table LED Lamp Gloches South Korea Imaging system for recording the bead motion in the wind-tunnel

Riferimenti

  1. Groh, C., Wierschem, A., Aksel, N., Rehberg, I., Kruelle, C. A. Barchan dunes in two dimensions: Experimental tests for minimal models. Phys. Rev. E. 78, 021304 (2008).
  2. Wierschem, A., Groh, C., Rehberg, I., Aksel, N., Kruelle, C. Ripple formation in weakly turbulent flow. Eur. Phys. J. E. 25, 213-221 (2008).
  3. Herrmann, H. . Dune Formation in Traffic and Granular Flow. , (2007).
  4. Stevanovic, V. D., et al. Analysis of transient ash pneumatic conveying over long distance and prediction of transport capacity. Powder Technol. 254, 281-290 (2014).
  5. Fan, F. -. G., Soltani, M., Ahmadi, G., Hart, S. C. Flow-induced resuspension of rigid-link fibers from surfaces. Aerosol. Sci. Tech. 27, 97-115 (1997).
  6. Burdick, G., Berman, N., Beaudoin, S. Hydrodynamic particle removal from surfaces. Thin Solid Films. , 116-123 (2005).
  7. Chang, Y. Laboratory investigation of flume traction and transportation. Proceedings of the American Society of Civil Engineers. , 1701-1740 (1939).
  8. Paintal, A. A stochastic model of bed load transport. J. Hydraul. Res. 9, 527-554 (1971).
  9. Mantz, P. A. Incipient transport of fine grains and flakes by fluids-extended shield diagram. J. Hydr. Eng. Div.-Asce. 103, (1977).
  10. Yalin, M. S., Karahan, E. Inception of sediment transport. J. Hydr. Eng. Div.-Asce. 105, 1433 (1979).
  11. Kuhnle, R. A. Incipient motion of sand-gravel sediment mixtures. J. Hydraul. Eng. 119, 1400-1415 (1993).
  12. Marsh, N. A., Western, A. W., Grayson, R. B. Comparison of methods for predicting incipient motion for sand beds. J. Hydraul. Eng. 130, 616-621 (2004).
  13. Vollmer, S., Kleinhans, M. G. Predicting incipient motion, including the effect of turbulent pressure fluctuations in the bed. Water Resour. Res. 43, (2007).
  14. Valyrakis, M., Diplas, P., Dancey, C. L., Greer, K., Celik, A. O. Role of instantaneous force magnitude and duration on particle entrainment. J. Geophys. Res.-Earth. 115, (2010).
  15. Dey, S., Ali, S. Z. Stochastic mechanics of loose boundary particle transport in turbulent flow. Phys. Fluids. 29, 055103 (2017).
  16. Wiberg, P. L., Smith, J. D. Calculations of the critical shear stress for motion of uniform and heterogeneous sediments. Water Resour. Res. 23, 1471-1480 (1987).
  17. Ling, C. -. H. Criteria for incipient motion of spherical sediment particles. J. Hydraul. Eng. 121, 472-478 (1995).
  18. Dey, S. Sediment threshold. Appl. Math. Model. 23, 399-417 (1999).
  19. Bravo, R., Ortiz, P., Pérez-Aparicio, J. Incipient sediment transport for non-cohesive landforms by the discrete element method (DEM). Appl. Math. Model. 38, 1326-1337 (2014).
  20. Ali, S. Z., Dey, S. Hydrodynamics of sediment threshold. Phys. Fluids. 28, 075103 (2016).
  21. Yalin, M. S. . Mechanics of sediment transport. , (1977).
  22. Graf, W. H., Sueska, L. Sediment transport in steep channels. Journal of Hydroscience and Hydraulic Engineering. 5, 233-255 (1987).
  23. Recking, A. . An experimental study of grain sorting effects on bedload. , (2006).
  24. Roušar, L., Zachoval, Z., Julien, P. Incipient motion of coarse uniform gravel. J. Hydraul. Res. 54, 615-630 (2016).
  25. Miller, R. L., Byrne, R. J. The angle of repose for a single grain on a fixed rough bed. Sedimentology. 6, 303-314 (1966).
  26. Fenton, J., Abbott, J. Initial movement of grains on a stream bed: the effect of relative protrusion. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 352, 523-537 (1977).
  27. Kirchner, J. W., Dietrich, W. E., Iseya, F., Ikeda, H. The variability of critical shear stress, friction angle, and grain protrusion in water-worked sediments. Sedimentology. 37, 647-672 (1990).
  28. Armanini, A., Gregoretti, C. Incipient sediment motion at high slopes in uniform flow condition. Water Resour. Res. 41, (2005).
  29. Chin, C., Chiew, Y. Effect of bed surface structure on spherical particle stability. J. Waterw. Port Coast. 119, 231-242 (1993).
  30. Whitehouse, R., Hardisty, J. Experimental assessment of two theories for the effect of bedslope on the threshold of bedload transport. Mar. Geol. 79, 135-139 (1988).
  31. Buffington, J. M., Montgomery, D. R. A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers. Water Resour. Res. 33, 1993-2029 (1997).
  32. Charru, F., Mouilleron, H., Eiff, O. Erosion and deposition of particles on a bed sheared by a viscous flow. J. Fluid Mech. 519, 55-80 (2004).
  33. Loiseleux, T., Gondret, P., Rabaud, M., Doppler, D. Onset of erosion and avalanche for an inclined granular bed sheared by a continuous laminar flow. Phys. Fluids. 17, 103304 (2005).
  34. Charru, F., Larrieu, E., Dupont, J. -. B., Zenit, R. Motion of a particle near a rough wall in a viscous shear flow. J. Fluid Mech. 570, 431-453 (2007).
  35. Ouriemi, M., Aussillous, P., Medale, M., Peysson, Y., Guazzelli, &. #. 2. 0. 1. ;. Determination of the critical Shields number for particle erosion in laminar flow. Phys. Fluids. 19, 061706 (2007).
  36. Lobkovsky, A. E., Orpe, A. V., Molloy, R., Kudrolli, A., Rothman, D. H. Erosion of a granular bed driven by laminar fluid flow. J. Fluid Mech. 605, 47-58 (2008).
  37. Martino, R., Paterson, A., Piva, M. Onset of motion of a partly hidden cylinder in a laminar shear flow. Phys. Rev. E. 79, 036315 (2009).
  38. Agudo, J., Wierschem, A. Incipient motion of a single particle on regular substrates in laminar shear flow. Phys. Fluids. 24, 093302 (2012).
  39. Agudo, J., et al. Detection of particle motion using image processing with particular emphasis on rolling motion. Rev. Sci. Instrum. 88, 051805 (2017).
  40. Agudo, J., et al. Shear-induced incipient motion of a single sphere on uniform substrates at low particle Reynolds numbers. J. Fluid Mech. 825, 284-314 (2017).
  41. Agudo, J., Dasilva, S., Wierschem, A. How do neighbors affect incipient particle motion in laminar shear flow?. Phys. Fluids. 26, 053303 (2014).
  42. Seizilles, G., Lajeunesse, E., Devauchelle, O., Bak, M. Cross-stream diffusion in bedload transport. Phys. Fluids. 26, 013302 (2014).
  43. Seizilles, G., Devauchelle, O., Lajeunesse, E., Métivier, F. Width of laminar laboratory rivers. Phys. Rev. E. 87, 052204 (2013).
  44. Hong, A., Tao, M., Kudrolli, A. Onset of erosion of a granular bed in a channel driven by fluid flow. Phys. Fluids. 27, 013301 (2015).
  45. Derksen, J., Larsen, R. Drag and lift forces on random assemblies of wall-attached spheres in low-Reynolds-number shear flow. J. Fluid Mech. 673, 548-573 (2011).
  46. Happel, J., Brenner, H. . Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media. , (1983).
  47. Lajeunesse, E., et al. Fluvial and submarine morphodynamics of laminar and near-laminar flows: A synthesis. Sedimentology. 57, 1-26 (2010).
  48. Aussillous, P., Chauchat, J., Pailha, M., Médale, M., Guazzelli, &. #. 2. 0. 1. ;. Investigation of the mobile granular layer in bedload transport by laminar shearing flows. J. Fluid Mech. 736, 594-615 (2013).
  49. Thompson, J. A., Bau, H. H. Microfluidic, bead-based assay: Theory and experiments. J. Chromatogr. B. 878, 228-236 (2010).
  50. Sawetzki, T., Rahmouni, S., Bechinger, C., Marr, D. W. In situ assembly of linked geometrically coupled microdevices. Proceedings of the National Academy of Sciences. 105, 20141-20145 (2008).
  51. Amini, H., Sollier, E., Weaver, W. M., Di Carlo, D. Intrinsic particle-induced lateral transport in microchannels. Proceedings of the National Academy of Sciences. 109, 11593-11598 (2012).
  52. Soepyan, F. B., et al. Threshold velocity to initiate particle motion in horizontal and near-horizontal conduits. Powder Technol. 292, 272-289 (2016).
  53. Deskos, G., Diplas, P. Incipient motion of a non-cohesive particle under Stokes flow conditions. International Journal of Multiphase Flow. , (2017).
  54. Julien, P. Y. . Erosion and sedimentation. , (2010).
  55. Jimenez, J. Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173-196 (2004).
  56. O’neill, P., Nicolaides, D., Honnery, D., Soria, J. . 15th Australasian Fluid Mechanics Conference. , 1-4 (2006).
  57. Schlichting, H. . Boundary-Layer Theory. , (1979).
  58. Rotta, J. Das in wandnähe gültige Geschwindigkeitsgesetz turbulenter Strömungen. Arch. Appl. Mech. 18, 277-280 (1950).
  59. Schlichting, H., Gersten, K., Krause, E., Oertel, H. . Boundary-layer theory. 7, (1955).
  60. Bruun, H. H. . Hot-wire anemometry-principles and signal analysis. , (1995).
  61. Fan, D., Cheng, X., Wong, C. W., Li, J. -. D. Optimization and Determination of the Frequency Response of Constant-Temperature Hot-Wire Anemometers. AIAA J. , 1-7 (2017).
  62. Valyrakis, M., Diplas, P., Dancey, C. L. Entrainment of coarse particles in turbulent flows: An energy approach. J. Geophys. Res.-Earth. 118, 42-53 (2013).
  63. Valyrakis, M., Diplas, P., Dancey, C. L. Entrainment of coarse grains in turbulent flows: An extreme value theory approach. Water Resour. Res. 47, (2011).
  64. Dey, S., Das, R., Gaudio, R., Bose, S. Turbulence in mobile-bed streams. Acta Geophys. 60, 1547-1588 (2012).
  65. Wu, F. -. C., Chou, Y. -. J. Rolling and lifting probabilities for sediment entrainment. J. Hydraul. Res. 129, 110-119 (2003).
  66. Leighton, D., Acrivos, A. The lift on a small sphere touching a plane in the presence of a simple shear flow. Z. Angew. Math. Phys. 36, 174-178 (1985).
  67. Tuyen, N. B., Cheng, N. -. S. A single-camera technique for simultaneous measurement of large solid particles transported in rapid shallow channel flows. Exp. Fluids. 53, 1269-1287 (2012).
  68. Gollin, D., Bowman, E., Shepley, P. Methods for the physical measurement of collisional particle flows. IOP Conference Series: Earth and Environmental Science. 26, 012017 (2015).
  69. Amon, A., et al. Focus on Imaging Methods in Granular Physics. Rev. Sci. Instrum. 88, (2017).
  70. Mouilleron, H., Charru, F., Eiff, O. Inside the moving layer of a sheared granular bed. J. Fluid Mech. 628, 229-239 (2009).
  71. Diplas, P., et al. The role of impulse on the initiation of particle movement under turbulent flow conditions. Science. 322, 717-720 (2008).
  72. Coleman, N. L. A theoretical and experimental study of drag and lift forces acting on a sphere resting on a hypothetical streambed. International Association for Hydraulic Research, 12th Congress, proceedings. 3, 185-192 (1967).
  73. El-Gabry, L. A., Thurman, D. R., Poinsatte, P. E. . Procedure for determining turbulence length scales using hotwire anemometry. , (2014).
  74. Roach, P. The generation of nearly isotropic turbulence by means of grids. Int. J. Heat Fluid Fl. 8, 82-92 (1987).
check_url/it/57238?article_type=t

Play Video

Citazione di questo articolo
Agudo, J. R., Han, J., Park, J., Kwon, S., Loekman, S., Luzi, G., Linderberger, C., Delgado, A., Wierschem, A. Visually Based Characterization of the Incipient Particle Motion in Regular Substrates: From Laminar to Turbulent Conditions. J. Vis. Exp. (132), e57238, doi:10.3791/57238 (2018).

View Video