Summary

原位燃烧试验方法: 原油可燃性和燃烧效率

Published: May 01, 2018
doi:

Summary

在这里, 我们提出了一个协议, 同时研究新鲜和风化原油的易燃性和燃烧效率的条件下, 模拟就地燃烧作业在海上。

Abstract

提出了通过两个实验实验室设置同时研究新鲜风化原油可燃性和燃烧效率的新方法。实验是容易重复的与操作的规模实验 (水池直径≥2 m), 同时仍然具有相当现实的就地燃烧条件原油在水。实验条件包括一个流动的水分层, 冷却浮油和外部热流 (高达50千瓦/米2), 模拟高热量反馈到燃料表面的操作规模原油池火灾。这些条件使对原油池火灾的燃烧效率进行控制的实验室研究相当于操作规模试验。该方法还根据临界热流、点火延迟时间、入射热流的作用、点火时的表面温度和热惯量等方面提供了对原油点火要求的定量数据。此类数据可用于确定点火源的所需强度和持续时间, 以点燃某种新鲜或风化的原油。该方法的主要局限性是, 流动水分层对燃烧原油作为外热流作用的冷却效果尚未完全量化。实验结果清楚地表明, 流动的水分层确实改善了该安装程序在原位燃烧条件下的代表性, 但在何种程度上, 这种表示是准确的目前还不确定。然而, 该方法具有最逼真的就地燃烧实验室条件, 目前可同时研究原油在水中的可燃性和燃烧效率。

Introduction

就地在水中燃烧溢油是一种海洋溢油反应方法, 它通过燃烧并将其转化为烟尘和气体燃烧产品, 将溢油从水面上除去。此响应方法在埃克森美孚1和深水地平线2漏油期间成功应用, 并经常被提及为北极345 的潜在溢油响应方法. ,6。确定就地烧油是否成功的两个关键参数是溢油反应方法, 即燃油的易燃性和燃烧效率。第一个参数, 易燃性, 描述了如何容易点燃燃料, 并可能导致火焰蔓延到燃料表面, 导致完全发展的火灾。第二个参数, 燃烧效率, 表示石油 (在 wt%) 的数量, 有效地从水面上被大火清除。因此, 在原位燃烧条件下, 了解不同原油的易燃性和预期燃烧效率是相关的。

就地燃烧目的而在水上点火是一个实际问题, 在点火系统上进行定性讨论5,7,8,9。将溢油点火作为二进制问题的实用方法, 并将油标为 “可燃性” 或 “不可燃性” (例如Brandvik、Fritt-拉斯穆森、 et al.10) 然而, 从根本观点看是不正确的。理论上, 任何燃料都可以被点燃, 给出适当的点火源。因此, 对各种不同原油类型的点火要求进行量化, 以更好地了解将其标记为 “不可燃性” 的原油的性质是相关的。为此, 本发明的方法可用于研究油的点火延迟时间, 即入射热流、油的临界热流及热惯量, 如: 加热油的难度.

在前面的研究中, 我们假设控制燃烧效率的主要参数是对燃料表面的热反馈11, 它是池直径的函数。该理论解释了燃烧效率的表观池大小依赖性基于实验室研究报告低燃烧效率 (32-80%)8,12,13和大规模研究 (水池直径≥2 m)报告高刻录效率 (90-99%)14,15,16。本文所讨论的方法旨在对所提出的理论进行测试。通过将小规模实验室实验引入到恒定的外热流中, 可以在受控实验室条件下模拟大型池火灾的高热反馈。因此, 所开发的方法可以通过改变外部热流, 有效地研究燃烧效率作为直径的函数。

除了外部热流来模拟较大规模的就地燃烧操作, 实验设置的特点是冷却浮油的冷水流量, 模拟的冷却效果的海流。讨论的方法还与新鲜的和风化的原油兼容。原油的风化描述了在水溢出后影响原油的物理和化学过程, 例如挥发性成分的损失和与水混合形成油水乳剂 (例如, AMAP17)。蒸发和乳化是影响原油可燃性的两个主要的风化过程18和模拟这些风化过程的协议包括在讨论的方法中。

在此, 我们提出了一种新的实验室方法, 确定原油的可燃性和燃烧效率的条件下, 模拟就地燃烧作业在海上。以往对原油可燃性和燃烧效率的研究具有可比性和不同的方法。在水的19和北极温度20下, 研究了新鲜和风化原油作为外热流作用的可燃性。燃烧效率研究通常侧重于不同类型的新鲜和风化的原油和环境条件的固定规模 (例如, Fritt-拉斯穆森, et al.8Bech、Sveum、 et21). 最近一项关于化学牧民所含原油燃烧的研究, 以作者的知识为基础, 首先研究了类似条件下的小型、中型和大型实验的燃烧效率13。然而, 由于进行此类实验所需的大量时间和资源, 大规模的实验并不容易用于参数研究。所提出的方法的主要优点是, 它允许同时研究在半现实条件下原油的可燃性和燃烧效率。通过容易重复的实验, 将这两种原油参数作为不同油型和 (模拟) 池直径的函数结合起来, 在实践中是行不通的。

Protocol

此协议使用两个不同的实验设置, 在步骤4-8 中使用, 如随附的示意图所示。第一个设置是原油易燃性装置 (COFA) (图 1和图 4), 它是一个 1.0 x 1.0 x 0.50 m3金属水盆, 旨在进行小规模原位燃烧原油实验, 如图所示在范 Gelderen, Brogaard, et al。22第二个安装程序是一个锥形加热器23 , 带有火花点火器, 其?…

Representative Results

图 5显示了使用步骤2中描述的方法在多天内蒸发掉的轻质原油的蒸发曲线, 损失为 30 wt%。这一数字清楚地表明, 在蒸发风化的第一天 (19 小时) 之后, 蒸发率大大降低, 这就使得协议中提到的停顿。 图 6显示了点火延迟时间, 它是由锥形加热器 (步骤7、图 2-3…

Discussion

本文讨论的两种风化方法是对水中溢油受17影响的相对简单的风化过程的近似。其他更复杂的风化方法也可用于提供风化的原油样品, 例如由 Brandvik 和 Faksness35描述的循环水槽。所提出的方法的优点是, 它们需要简单的设备, 并且可以很容易地在实验室环境中进行。由此产生的风化原油随后在本议定书的易燃性和燃烧效率研究中发挥作用, 如 “代表性成果” 一节所?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

提交人感谢丹麦独立研究理事会为该项目提供资金 (赠款 DDF-1335-00282)。COWIfonden 资助了原油可燃性装置和气体分析仪的建造, 包括管道插入。马士基油和挪威石油有限公司提供了用于代表结果的原油。任何提案国都没有参与该议定书或本文件的结果。作者还要感谢 Ulises 的帮助与构造改进的锥试样持有人。

Materials

DUC Crude Oil Maersk N/A Light crude oil with r = 0.853 g/ml and h = 6.750 mPa*s.
Grane Crude Oil Statoil N/A Heavy crude oil with r = 0.925 g/ml and h = 133.6 mPa*s.
SVM 3000 Stabinger Viscometer Anton Paar C18IP007EN-P Viscosity and density meter for the fresh and weathered crude oils.
Laboshake RO500 Gerhardt 11-0002 Rotary shaking table for emulsifying water and oil mixtures.
Jebao Wave Maker RW-4 Jebao N/A Propeller (flow of 500-4000 L/h) used in the COFA setup to generate a current.
Aquabee UP 3000 Aquabee UP 3000 Aquarium pump for cooling of heat flux gauge.
Adventurer Precision Electronic Balance OHAUS AX5205 Load scale used to weigh the oil for the COFA experiments and in the custom-made cone sample holder for the cone setup.
3M Oil Sorbent Pads VWR MMMAHP156 Hydrophobic absorption pads used to collect oil residues to determine the burning efficiency of the fire.
Mass Loss Calorimeter Fire Testing Technology (FTT) B11325-650-1-1608 A custom-made, circular holder was used for the testing of crude oil rather than the standard square sample holder. Includes a heat flux gauge with a range up to 100 kW/m2.
34972A Data Acquisition / Data Logger Switch Unit RS Components Ltd. 702-7958 Produced by Keysight Technologies. Operated by Keysight benchLink data logger 3 software and equipped with a 20-channel multiplexer.
Keysight Technologies 34901A 20-channel multiplexer RS Components Ltd. 702-7939 Produced by Keysight Technologies.
Bellows-Sealed Valve Swagelok SS-1GS6MM Toggle valve to open/close the water in- and outlet of the custom-made cone sample holder for the cone setup.
Kronos 50 Peristaltic Pump SEKO KRFM0210M6000 Peristaltic pump used to cool the custom-made cone sample holder for the cone setup.
ARCTIC A28 Refrigerated Circulater ThermoFisher Scientific 152-5281 Water cooling reservoir used to cool the cooling water that flows through the custom-made cone sample holder for the cone setup. Includes a SC 100 Immersion Circulator controller.
Gas Analysis Instrumentation Console with Duct Insert Fire Testing Technology (FTT) B11328-650-1-1609 Gas analyzer for O2, CO2 and CO. Uses a 34972A Data Acquisition / Data Logger Switch Unit.
Ceramic & Stainless Steel 2.5mm Electrode Fire Testing Technology (FTT) M015-4 Spark igniter from the Mass Loss Calorimeter. Used in the COFA setup to measure the surface temperature upon ignition.
Infrared Emitter-Module M110/348 Heraeus 80046199 Original Infrared heaters on which the new design with a water-cooled holder for the heating elements was based. Includes two short wave twin tube emitters (09751751). Operated by a type CB1x25 P power controller.
Power Controller Heratron  Heraeus 80055836 Type CB1x25 P power controller for the infrared heaters.

Riferimenti

  1. Allen, A. A. Contained Controlled Burning of Spilled Oil During the Exxon Valdez Oil Spill. , 305-313 (1990).
  2. Allen, A. A., Jaeger, D., Mabile, N. J., Costanzo, D. The Use of Controlled Burning During the Gulf of Mexico Deepwater Horizon MC-252 Oil Spill Response. International Oil Spill Conference Proceedings. 2011 (1), 1-13 (2011).
  3. AMAP. . Assessment 2007: Oil and Gas Activities in the Arctic – Effects and Potential Effects. 1, 423 (2010).
  4. Nuka, Research Planning Group, LLC. . Oil Spill Prevention and Response in the U.S. Arctic Ocean: Unexamined Risks, Unacceptable Consequences. , 136 (2010).
  5. Buist, I. A., et al. . In Situ Burning in Ice-Affected Waters: State of Knowledge Report Final Report 7.1.1. , 293 (2013).
  6. EPPR. . Guide to Oil Spill Response in Snow and ce Conditions in the Arctic. , 184 (2015).
  7. Opstad, K., Guénette, C. Fire on the Sea Surface, Ignitability and Sustainability Under Various Environmental Conditions. Fire Safety Science. 6, 741-752 (2000).
  8. Fritt-Rasmussen, J., Brandvik, P. J., Villumsen, A., Stenby, E. H. Comparing Ignitability for In Situ Burning of Oil Spills for an Asphaltenic, a Waxy and a Light Crude Oil as a Function of Weathering Conditions Under Arctic Conditions. Cold Reg. Sci. Technol. 72, 1-6 (2012).
  9. Guénette, C. C., Thornborough, J. An Assessment Of Two Off-Shore Igniter Concepts. Proceedings of the Twentieth Arctic and Marine Oil Spill Program (AMOP) Technical Seminar . , 795-808 (1997).
  10. Brandvik, P. J., Fritt-Rasmussen, J., Daniloff, R., Leirvik, F., Resby, J. L. . Establishing, testing and verification of a laboratory burning cell to measure ignitability for in situ burning of oil spills. Report No. 20, 26. 20, (2010).
  11. Van Gelderen, L., Malmquist, L. M. V., Jomaas, G. Vaporization order and burning efficiency of crude oils during in situ burning on water. Fuel. 191, 528-537 (2017).
  12. Farmahini Farahani, H., Shi, X., Simeoni, A., Rangwala, A. S. A Study on Burning of Crude Oil in Ice Cavities. Proc. Combust. Inst. 35 (3), 2699-2706 (2015).
  13. Bullock, R. J., Aggarwal, S., Perkins, R. A., Schnabel, W. Scale-up considerations for surface collecting agent assisted in situ burn crude oil spill response experiments in the Arctic: Laboratory to field-scale investigations. J. Environ. Manage. 190, 266-273 (2017).
  14. Fingas, M. F., et al. The Newfoundland Offshore Burn Experiment – NOBE. , 63-70 (1994).
  15. Guénette, C. C., Wighus, R. In situ Burning of Crude Oil and Emulsions in Broken Ice. , 895-906 (1996).
  16. Potter, S. Tests of Fire-Resistant Booms in Low Concentrations of Drift Ice – Field experiments May 2009. Report No. 27. 27, 17 (2010).
  17. AMAP. . Assessment 2007: Oil and Gas Activities in the Arctic – Effects and Potential Effects. 2, 277 (2010).
  18. Buist, I. Window-of-Opportunity for In Situ Burning. Spill Sci. Technol. Bull. 8 (4), 341-346 (2003).
  19. Wu, N., Kolb, G., Torero, J. L. The Effect of Weathering on the Flammability of a Slick of Crude Oil on a Water Bed. Combust. Sci. Technol. 161 (1), 269-308 (2000).
  20. Ranellone, R. T., Tukaew, P., Shi, X., Rangwala, A. S. Ignitability of crude oil and its oil-in-water products at arctic temperature. Mar. Pollut. Bull. 115 (1), 261-265 (2017).
  21. Bech, C. M., Sveum, P., Buist, I. A. The Effect of Wind, Ice and Waves on the In situ Burning of Emulsions and Aged Oils. , 735-748 (1993).
  22. Van Gelderen, L., et al. Importance of the Slick Thickness for Effective In situ Burning of Crude Oil. Fire Saf. J. 78, 1-9 (2015).
  23. . . ISO 17554:2014(E) Reaction to fire tests – Mass loss measurement. , 28 (2014).
  24. . . , 39 (2001).
  25. Stiver, W., Mackay, D. Evaporation rate of spills of hydrocarbons and petroleum mixtures. Environ. Sci. Technol. 18 (11), 834-840 (1984).
  26. Buist, I., Potter, S., Zabilansky, L., Guarino, A., Mullin, J., Davidson, W. F., Lee, K., Cogswell, A. . Oil Spill Response: A Global Perspective. , 41-62 (2008).
  27. Daling, P. S., Moldestad, M. &. #. 2. 1. 6. ;., Johansen, &. #. 2. 1. 6. ;., Lewis, A., Rødal, J. Norwegian Testing of Emulsion Properties at Sea–The Importance of Oil Type and Release Conditions. Spill Sci. Technol. Bull. 8 (2), 123-136 (2003).
  28. Arai, M., Saito, K., Altenkirch, R. A. A Study of Boilover in Liquid Pool Fires Supported on Water Part I: Effects of a Water Sublayer on Pool Fires. Combust. Sci. Technol. 71 (1-3), 25-40 (1990).
  29. Garo, J. P., Vantelon, J. P., Fernandez-Pello, A. C. Boilover Burning of Oil Spilled on Water. Symp. (Int.) Combust. 25 (1), 1481-1488 (1994).
  30. Evans, D. D., Mulholland, G. W., Gross, H., Baum, H., Saito, K. Burning, smoke production, and smoke dispersion from oil spill combustion. , 41-87 (1988).
  31. Guénette, C. C., Sveum, P., Buist, I., Aunaas, T., Godal, L. . In situ burning of water-in-oil emulsions. , 139 (1994).
  32. Van Gelderen, L., Rojas Alva, U., Mindykowski, P., Jomaas, G. Thermal Properties and Burning Efficiencies of Crude Oils and Refined Fuel Oil. International Oil Spill Conference Proceedings. 2017 (1), 985-1005 (2017).
  33. Quintiere, J. G. Ch 7. Fundamentals of Fire Phenomena. , 159-190 (2006).
  34. Janssens, M. L. Measuring rate of heat release by oxygen consumption. Fire Technol. 27 (3), 234-249 (1991).
  35. Brandvik, P. J., Faksness, L. G. Weathering processes in Arctic oil spills: Meso-scale experiments with different ice conditions. Cold Reg. Sci. Technol. 55 (1), 160-166 (2009).
  36. Wighus, R., Guènette, C. Fire on the sea surface – Experiments hazard assessment 1995. Report No. NBL A07129. , 40 (2007).
  37. Guénette, C. C., Sveum, P., Bech, C. M., Buist, I. A. Studies of In Situ Burning of Emulsions in Norway. International Oil Spill Conference Proceedings. (1), 115-122 (1995).
check_url/it/57307?article_type=t

Play Video

Citazione di questo articolo
van Gelderen, L., Jomaas, G. Experimental Procedure for Laboratory Studies of In Situ Burning : Flammability and Burning Efficiency of Crude Oil. J. Vis. Exp. (135), e57307, doi:10.3791/57307 (2018).

View Video