Summary

To effekter av melanom Cell-derived faktorer på benmarg adipocytter differensiering

Published: August 23, 2018
doi:

Summary

Her presenterer vi en pålitelig og enkel todimensjonal (2D) coculture system for å studere samspillet mellom kreftceller og benmarg adipocytter, som avslører en dobbel effekt av melanom celle-avledet faktorer på benmarg adipocytter differensiering og utgjør også en klassisk metode for mekanistisk studier av bein metastasering.

Abstract

Crosstalk mellom benmarg adipocytter og kreftceller kan spille en avgjørende rolle i prosessen med bein metastasering. En rekke metoder er tilgjengelige for å studere den betydelige crosstalk; imidlertid fortsatt en todimensjonal transwell system for coculture en klassisk, pålitelig, og enkel måte for denne crosstalk studien. Her presenterer vi en detaljert protokoll som viser coculture av benmarg adipocytter og melanom celler. Likevel kunne slikt coculture system ikke bare bidra til studiet av cellen signal transductions av kreftceller av benmarg adipocytter, men også i fremtiden mekanistisk studie av bein metastasering som kan avsløre nye terapeutiske mål for bein metastasering.

Introduction

Benmetastaser er utbredt blant avansert kreftpasienter, men en helbredende behandling er fremdeles utilgjengelig. Utover spesialiserer seg på lagring av energi som fett, kan adipocytter støtte tumor vekst og metastasering i benmargen og andre organer1,2,3,4,5,6. Videre spiller adipocytter en viktig rolle i å regulere kreft cellen biologi7,8,9,10 og metabolisme4,11,12 ,13,14,15,16, så vel som i bein metastasering1,4,12. I benmargen nisje, kan adipocytter også påvirke biologisk atferd av kreft celler4,6,17. Samspillet mellom benmarg adipocytter og kreftceller med osteotropism er viktig for en forståelse av bein metastasering. Men er lite kjent.

Basert på dagens studier, brukes ulike metoder på adipocytter, inkludert to – eller tre – dimensjonale (2/3D) og ex vivo kulturer17,18,19,20,21. Nylig utviklet Herroon et al. en ny 3D-kultur tilnærming til studere interaksjoner av benmarg adipocytter med kreft celler22. Selv om det 3D coculture er optimal for mimicking fysiologiske interaksjoner mellom adipocytter og kreft celler i vivo, den lider av dårlig reproduserbarhet22,23. I forhold til en 2D coculture system, kan en 3D coculture-system gi mobilnettet Norge, for eksempel cellen morfologi21,22,24,25,26. Videre kan ex vivo kulturen av isolerte cancellous bein vev føre til en robust utvekst av adipocytter kulturperler bein margtransplantasjon celler17.

I motsetning til disse tidligere modeller imidlertid 2D celle kultur modellen en klassisk, pålitelig og enkel teknikk for raskt skanne kandidat molekyler og av fenotyper i enten adipocytter eller kreft celler i vitro1, 4,6,12,15,27. For bedre å forstå crosstalk mellom benmarg adipocytter og melanom celler, gir vi en detaljert protokoll for et 2D coculture system av benmarg adipocytter med melanom celler.

Protocol

Merk: Alle cellene som brukes i denne protokollen må være dyrket i minst tre generasjoner etter tining av frosne lager celler. 1. harvest melanom Cell-derived faktorer Forberedelser Få B16F10 celler og en mus melanom cellen linje.Merk: For denne protokollen, en mus melanom cellen linje er Hentet fra den stilk cellen Bank av det kinesiske vitenskapsakademi. Foreta et komplett medium for B16F10 cellekultur (100 mL). Bruk Dulbeccos endret Ea…

Representative Results

I benmargen, adipocytter kan vises i de svulst microenvironment1,13,33,34,35 på et tidlig stadium for å støtte svulst progresjon gjennom løselig faktorer eller aktivere osteoclastogenesis6,12,36, spesielt i sammenheng med fedme<sup…

Discussion

Cocultures med innlegg har vært mye brukt til å studere celle til celle interaksjoner. 2D coculture systemet er en effektiv måte å observere hvordan de to delene crosstalk i vitro, som vi her viste to forskjellige kreft celle-drevet effekter på benmarg adipocytter. Mange labs har brukt denne metoden for å undersøke crosstalk mellom adipocytter og kreft celler6,12,27,39.

<p c…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Vi takker Dov Zipori (The Weizmann-Instituttet for vitenskap, Rehovot, Israel) ber for å gi oss murine benmarg stromal cellen linje 14F1.1. Denne studien ble støttet av tilskudd fra kinesiske National Natural Science Foundation (nr. 81771729) og Yongchuan Hospital i Chongqing medisinske universitet (Nos. YJQN201330; YJZQN201527).

Materials

DMEM Invitrogen Inc. 11965092
Fetal Bovine Serum Invitrogen Inc. 16000–044
Phosphate Buffered Saline Invitrogen Inc. 14190-144
Insulin Sigma-Aldrich 91077C
3-isobutyl-1-methyl-xanthine Sigma-Aldrich I5879
Dexamethasone Sigma-Aldrich D4902
Oil Red o Sigma-Aldrich O0625
24-well plate Corning CLS3527
Transwell insert Millipore MCHT24H48
Penicillin/Streptomycin Invitrogen 15140-122
isopropanol Sigma-Aldrich I9516
0.25% trypsin Thermo Scientific 25200056
hemocytometer Bio-Rad 1450016
Culture incubator Thermo Scientific
50ml falcon Corning CLS430828
Clean Bench Thermo Scientific
Microscopy Olympus
200 μL pipet tips BeyoGold FTIP620
1000 mL pipet tips BeyoGold FTIP628

Riferimenti

  1. Wang, J., et al. Adipogenic niches for melanoma cell colonization and growth in bone marrow. Laboratory Investigation. 97 (6), 737-745 (2017).
  2. Trotter, T. N., et al. Adipocyte-Lineage Cells Support Growth and Dissemination of Multiple Myeloma in Bone. The American Journal of Pathology. 186 (11), 3054-3063 (2016).
  3. Morris, E. V., Edwards, C. M. The role of bone marrow adipocytes in bone metastasis. Journal of Bone Oncology. 5 (3), 121-123 (2016).
  4. Diedrich, J. D., et al. Bone marrow adipocytes promote the Warburg phenotype in metastatic prostate tumors via HIF-1alpha activation. Oncotarget. 7 (40), 64854-64877 (2016).
  5. Chkourko Gusky, H., Diedrich, J., MacDougald, O. A., Podgorski, I. Omentum and bone marrow: how adipocyte-rich organs create tumour microenvironments conducive for metastatic progression. Obesity Reviews. 17 (11), 1015-1029 (2016).
  6. Chen, G. L., et al. High fat diet increases melanoma cell growth in the bone marrow by inducing osteopontin and interleukin 6. Oncotarget. 7 (18), 26653-26669 (2016).
  7. Balaban, S., et al. Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer & Metabolism. 5, 1 (2017).
  8. Huang, C. K., et al. Adipocytes promote malignant growth of breast tumours with monocarboxylate transporter 2 expression via beta-hydroxybutyrate. Nature Communications. 8, 14706 (2017).
  9. Wang, Y. Y., et al. Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells. JCI Insight. 2 (4), 87489 (2017).
  10. Wang, C., Gao, C., Meng, K., Qiao, H., Wang, Y. Human adipocytes stimulate invasion of breast cancer MCF-7 cells by secreting IGFBP-2. PLoS One. 10 (3), 0119348 (2015).
  11. Nieman, K. M., et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nature Medicine. 17 (11), 1498-1503 (2011).
  12. Herroon, M. K., et al. Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms. Oncotarget. 4 (11), 2108-2123 (2013).
  13. Tabe, Y., et al. Bone Marrow Adipocytes Facilitate Fatty Acid Oxidation Activating AMPK and a Transcriptional Network Supporting Survival of Acute Monocytic Leukemia Cells. Ricerca sul cancro. 77 (6), 1453-1464 (2017).
  14. Wen, Y. A., et al. Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer. Cell Death & Differentiation. 8 (2), 2593 (2017).
  15. Liu, Z., et al. Mature adipocytes in bone marrow protect myeloma cells against chemotherapy through autophagy activation. Oncotarget. 6 (33), 34329-34341 (2015).
  16. Ye, H., et al. Leukemic Stem Cells Evade Chemotherapy by Metabolic Adaptation to an Adipose Tissue Niche. Cell Stem Cell. 19 (1), 23-37 (2016).
  17. Templeton, Z. S., et al. Breast Cancer Cell Colonization of the Human Bone Marrow Adipose Tissue Niche. Neoplasia. 17 (12), 849-861 (2015).
  18. Daquinag, A. C., Souza, G. R., Kolonin, M. G. Adipose tissue engineering in three-dimensional levitation tissue culture system based on magnetic nanoparticles. Tissue Engineering Part C: Methods. 19 (5), 336-344 (2013).
  19. Emont, M. P., et al. Using a 3D Culture System to Differentiate Visceral Adipocytes In Vitro. Endocrinology. 156 (12), 4761-4768 (2015).
  20. Katt, M. E., Placone, A. L., Wong, A. D., Xu, Z. S., Searson, P. C. In Vitro Tumor Models: Advantages, Disadvantages, Variables, and Selecting the Right Platform. Frontiers in Bioengineering and Biotechnology. 4, 12 (2016).
  21. Edmondson, R., Broglie, J. J., Adcock, A. F., Yang, L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. ASSAY and Drug Development Technologies. 12 (4), 207-218 (2014).
  22. Herroon, M. K., Diedrich, J. D., Podgorski, I. New 3D-Culture Approaches to Study Interactions of Bone Marrow Adipocytes with Metastatic Prostate Cancer Cells. Frontiers in Endocrinology (Lausanne). 7, 84 (2016).
  23. Lee, J. M., et al. A three-dimensional microenvironment alters protein expression and chemosensitivity of epithelial ovarian cancer cells in vitro. Laboratory Investigation. 93 (5), 528-542 (2013).
  24. Imamura, Y., et al. Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer. Oncology Reports. 33 (4), 1837-1843 (2015).
  25. Birgersdotter, A., Sandberg, R., Ernberg, I. Gene expression perturbation in vitro–a growing case for three-dimensional (3D) culture systems. Seminars in Cancer Biology. 15 (5), 405-412 (2005).
  26. Wang, W., et al. 3D spheroid culture system on micropatterned substrates for improved differentiation efficiency of multipotent mesenchymal stem cells. Biomaterials. 30 (14), 2705-2715 (2009).
  27. Dirat, B., et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Ricerca sul cancro. 71 (7), 2455-2465 (2011).
  28. Scott, M. A., Nguyen, V. T., Levi, B., James, A. W. Current methods of adipogenic differentiation of mesenchymal stem cells. Stem Cells and Development. 20 (10), 1793-1804 (2011).
  29. Zipori, D., Toledo, J., von der Mark, K. Phenotypic heterogeneity among stromal cell lines from mouse bone marrow disclosed in their extracellular matrix composition and interactions with normal and leukemic cells. Blood. 66 (2), 447-455 (1985).
  30. Maridas, D. E., Rendina-Ruedy, E., Le, P. T., Rosen, C. J. Isolation, Culture, and Differentiation of Bone Marrow Stromal Cells and Osteoclast Progenitors from Mice. Journal of Visualized Experiments. (131), e56750 (2018).
  31. Iguchi, T., Niino, N., Tamai, S., Sakurai, K., Mori, K. Absolute Quantification of Plasma MicroRNA Levels in Cynomolgus Monkeys, Using Quantitative Real-time Reverse Transcription PCR. Journal of Visualized Experiments. (132), e56850 (2018).
  32. Bozec, A., Hannemann, N. Mechanism of Regulation of Adipocyte Numbers in Adult Organisms Through Differentiation and Apoptosis Homeostasis. Journal of Visualized Experiments. (112), e53822 (2016).
  33. Shafat, M. S., et al. Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment. Blood. 129 (10), 1320-1332 (2017).
  34. Gazi, E., et al. Direct evidence of lipid translocation between adipocytes and prostate cancer cells with imaging FTIR microspectroscopy. The Journal of Lipid Research. 48 (8), 1846-1856 (2007).
  35. Brown, M. D., et al. Influence of omega-6 PUFA arachidonic acid and bone marrow adipocytes on metastatic spread from prostate cancer. British Journal of Cancer. 102 (2), 403-413 (2010).
  36. Hardaway, A. L., Herroon, M. K., Rajagurubandara, E., Podgorski, I. Marrow adipocyte-derived CXCL1 and CXCL2 contribute to osteolysis in metastatic prostate cancer. Clinical & Experimental Metastasis. 32 (4), 353-368 (2015).
  37. Aebi, M. Spinal metastasis in the elderly. European Spine Journal. 12, 202-213 (2003).
  38. Wagner, M., Bjerkvig, R., Wiig, H., Dudley, A. C. Loss of adipocyte specification and necrosis augment tumor-associated inflammation. Adipocyte. 2 (3), 176-183 (2013).
  39. Bochet, L., et al. Cancer-associated adipocytes promotes breast tumor radioresistance. Biochemical and Biophysical Research Communications. 411 (1), 102-106 (2011).
  40. Hirano, T., et al. Enhancement of adipogenesis induction by conditioned media obtained from cancer cells. Cancer Letters. 268 (2), 286-294 (2008).
  41. Gordeev, A. A., Chetverina, H. V., Chetverin, A. B. Planar arrangement of eukaryotic cells in merged hydrogels combines the advantages of 3-D and 2-D cultures. Biotechniques. 52 (5), 325-331 (2012).
check_url/it/57329?article_type=t

Play Video

Citazione di questo articolo
Wang, J., Wen, J., Chen, X., Chen, G. Dual Effects of Melanoma Cell-derived Factors on Bone Marrow Adipocytes Differentiation. J. Vis. Exp. (138), e57329, doi:10.3791/57329 (2018).

View Video