Summary

优化结构静电纺丝血管移植在大鼠模型中的植入

Published: June 27, 2018
doi:

Summary

在此, 我们提出了一种改进的静电纺丝方法, 以制造粗纤维和大孔隙的 PCL 血管移植, 并描述了一个协议, 以评估在体内的性能在大鼠腹主动脉置换模型。

Abstract

在这里, 我们提出了一个制备大孔 PCL 血管移植的协议, 并描述了一个模型的应用腹主动脉替代模式的评估协议。静电纺丝血管移植通常具有相对较小的孔隙, 限制细胞浸润到移植物中, 阻碍新动脉的再生和重塑。本研究采用改良的工艺制备了较厚纤维 (5-6 µm) 和较大孔隙 (~ 30 µm) 的 PCL 血管移植。采用大鼠腹主动脉模型植入法对移植物的远期表现进行评价。超声分析显示, 即使植入12月后, 移植物仍未发生动脉瘤或狭窄。大孔结构改善细胞肉芽, 从而促进组织再生3月。更重要的是, 没有出现不良重塑的迹象, 例如12月后移植壁内的钙化。因此, 经改良大孔处理的静电纺丝 PCL 血管移植可作为长期植入的动脉替代物。

Introduction

合成高分子的血管移植广泛应用于心血管疾病 (心血管病) 的临床治疗。不幸的是, 在小直径血管移植 (D < 6 毫米) 的情况下, 没有成功的产品, 由于低通畅触发的血液流速降低, 这往往导致血栓形成, 内膜增生, 和其他并发症1

组织工程提供了一个替代策略, 以实现长期通畅和动态平衡的基础上的支架引导血管再生和重建。详细来说, 血管移植作为一个三维模板, 可以在血管组织再生过程中提供机械支持和结构指导, 并影响细胞功能, 包括细胞黏附、迁移、增殖和分泌细胞外基质2。到目前为止, 各种合成聚合物已被评价为应用于血管组织工程。在这些聚合物中, 聚 (己内酯) (PCL) 由于良好的细胞相容性和缓慢的降解, 从几个月到两年不等, 已被深入研究。用静电纺丝处理的大鼠主动脉模型456、PCL 血管移植表现出优良的结构完整性和通畅性, 并不断增加细胞侵袭和新生血管移植壁长达6月。然而, 不良组织重塑, 包括细胞的回归和毛细血管和钙化, 也被观察到更长的 timepoints, 长达18月。

Cellularization 血管移植是决定组织再生和重塑7的关键因素。静电纺丝作为一种多功能技术, 已广泛应用于纳米纤维结构8的血管移植的制备。不幸的是, 相对较小的孔隙结构往往导致细胞浸润不足的静电纺丝血管移植, 这限制了随后的组织再生。为了解决这一问题, 尝试了各种技术来提高孔径和整体孔隙率, 包括盐/聚合物浸出9,10, 集热器的修改, 激光辐照后处理11。事实上, 静电纺丝的结构 (包括纤维直径、孔隙大小和孔隙度) 与加工条件1213密切相关。在静电纺丝过程中, 通过改变聚合物溶液的浓度、流量、电压等参数, 可以很容易地控制纤维的直径. 14,15, 因此, 孔隙大小和孔隙度得到了相应的增强。

我们最近报告了一个改良的 PCL 静电纺丝移植与大孔结构 (纤维直径 5-7 µm 和毛孔 30-40 µm)。在活体移植中, 取代大鼠腹主动脉显示出高的通畅率, 以及良好的内皮化和平滑肌再生3月后手术16。更重要的是, 即使在植入一年后, 也不会有钙化和细胞回归等不良组织重塑。

Protocol

实验动物的使用由南开大学动物实验伦理委员会批准, 并按照《实验室动物护理和使用指南》进行。 1. 静电纺丝 PCL 移植物的制备 注: 本文采用静电纺丝技术制备血管移植。 制备 25 wt% 和 10 wt% 的 pcl 溶液, 分别在甲醇和氯仿混合物中溶解 pcl (1:5 体积比), 室温 (RT) 为12小时。 将 PCL 溶液装入10毫升的玻璃注射器中。 把注射器放在21克的?…

Representative Results

对 PCL 移植术后3月和12月说明, 用标准组织学技术对苏木精和伊红 (H & E)、马尾松三色、Verhoeff Gieson (VVG)、冯科萨和α SMA 的免疫荧光染色进行分析,MYH, vWF 和弹力蛋白。组织学图像采用直立显微镜, 用fluorescence 显微镜拍摄免疫荧光图像。 所有数据均以平均值表示。用双尾配对学生的t检验来比较差异。p < 0.05 的值被?…

Discussion

细胞浸润对16体内血管移植的再生和重塑至关重要。有限细胞浸润通常与移植的相对较小的毛孔有关, 阻碍细胞向移植壁迁移。为了解决这一困难, 我们开发了一种改进的方法来制备静电纺丝 PCL 血管移植的大孔结构。详细地说, 孔隙大小随纤维厚度的增加而增大, 其加工参数可以很容易地控制。结果表明,体外植入后, 宿主细胞很容易渗入到大孔移植的壁内, 细胞构?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了自然科学基金项目 (81522023、81530059、91639113、81772000、81371699和 81401534) 的财政支持。

Materials

Poly(ε-caprolactone) (PCL) pellets (Mn=80,000) Sigma 704067
Methanol Tianjin Chemical Reagent Company 1060
Alcohol Tianjin Chemical Reagent Company 1083
Chloroform Tianjin Chemical Reagent Company A1007
Sucrose Tianjin Fengchuan Company 2296
Triton X-100 Alfa Aesar A16046
Sprague Dawley rats Laboratory Animal Center of the Academy of Military Medical Sciences
Normal saline Hebei Tiancheng Pharmaceutical company
Chloral hydrate Tianjin Ruijinte chemical company 2223
Heparin sodium Injection Tianjin Biochem Pharmaceutical company
Gentamycin Sulfate Injection Jiangsu Lianshui Pharmaceutical company
Mouse anti-α-SMA primary antibody Abcam ab7817
Mouse anti-smooth MYH primary antibody Abcam ab683
Rabbit polyclonal anti-rat elastin antibody Abcam ab23748
Rabbit anti-von Willebrand factor primary antibody Abcam ab6994
Goat anti-mouse IgG (Alexa Fluor 488) Invitrogen ab150117
Goat anti-rabbit IgG (Alexa Fluor 488) Invitrogen ab150077
5% normal goat serum Zhongshan Golden bridge ZLI9022
Hematoxylin and eosin (H&E) Beijing leagene biotech DH0006
Masson's trichrome Beijing leagene biotech DC0032
Verhoeff-van Gieson (VVG) Beijing leagene biotech DC0059
Von Kossa Beijing leagene biotech DS0003
Surgical sutures needles with thread,3-0 silk Shanghai Jinhuan medical supplies company G3002b
Surgical sutures needles with thread,9-0 silk Shanghai Jinhuan medical supplies company H901

Riferimenti

  1. Coombs, K. E., Leonard, A. T., Rush, M. N., Santistevan, D. A., Hedberg-Dirk, E. L. Isolated effect of material stiffness on valvular interstitial cell differentiation. J Biomed Mater Res A. 105 (1), 51-61 (2017).
  2. Zhang, L., et al. A sandwich tubular scaffold derived from chitosan for blood vessel tissue engineering. J Biomed Mater Res A. 77 (2), 277-284 (2006).
  3. Thottappillil, N., Nair, P. D. Scaffolds in vascular regeneration: current status. Vasc Health Risk Manag. 11, 79-91 (2015).
  4. Pektok, E., et al. Degradation and healing characteristics of small-diameter poly (e-caprolactone) vascular grafts in the rat systemic arterial circulation. Circulation. 118 (24), 2563-2570 (2008).
  5. Innocente, F., et al. Paclitaxel-eluting biodegradable synthetic vascular prostheses: a step towards reduction of neointima formation?. Circulation. 120 (11 Suppl), S37-S45 (2009).
  6. de Valence, S., et al. Advantages of bilayered vascular grafts for surgical applicability and tissue regeneration. Acta Biomater. 8 (11), 3914-3920 (2012).
  7. Assmann, A., et al. Acceleration of autologous in vivo recellularization of decellularized aortic conduits by fibronectin surface coating. Biomaterials. 34 (25), 6015-6026 (2013).
  8. Hasan, A., et al. Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater. 10 (1), 11-25 (2014).
  9. Baker, B. M., et al. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials. 29 (15), 2348-2358 (2008).
  10. Wang, K., et al. Creation of macropores in electrospun silk fibroin scaffolds using sacrificial PEO-microparticles to enhance cellular infiltration. Journal of Biomedical Materials Research Part A. 101 (12), 3474-3481 (2013).
  11. Lee, B. L. P., et al. Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds. Acta Biomaterialia. 8 (7), 2648-2658 (2012).
  12. Rnjak-Kovacina, J., Weiss, A. S. Increasing the pore size of electrospun scaffolds. Tissue Eng Part B Rev. 17 (5), 365-372 (2011).
  13. Zhong, S., Zhang, Y., Lim, C. T. Fabrication of large pores in electrospun nanofibrous scaffolds for cellular infiltration: a review. Tissue Eng Part B Rev. 18 (2), 77-87 (2012).
  14. Pham, Q. P., Sharma, U., Mikos, A. G. Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules. 7 (10), 2796-2805 (2006).
  15. Rnjak-Kovacina, J., et al. Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering. Biomaterials. 32 (28), 6729-6736 (2011).
  16. Wang, Z., et al. The effect of thick fibers and large pores of electrospun poly(epsilon-caprolactone) vascular grafts on macrophage polarization and arterial regeneration. Biomaterials. 35 (22), 5700-5710 (2014).
  17. Hutcheson, J. D., et al. Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques. Nat Mater. 15 (3), 335-343 (2016).
  18. Tara, S., et al. Well-organized neointima of large-pore poly(L-lactic acid) vascular graft coated with poly(L-lactic-co-epsilon-caprolactone) prevents calcific deposition compared to small-pore electrospun poly(L-lactic acid) graft in a mouse aortic implantation model. Atherosclerosis. 237 (2), 684-691 (2014).
check_url/it/57340?article_type=t

Play Video

Citazione di questo articolo
Qin, K., Wu, Y., Pan, Y., Wang, K., Kong, D., Zhao, Q. Implantation of Electrospun Vascular Grafts with Optimized Structure in a Rat Model. J. Vis. Exp. (136), e57340, doi:10.3791/57340 (2018).

View Video