Summary

基于表型梯度的鸡蛋排斥试验对鸡蛋识别极限的探讨

Published: August 22, 2018
doi:

Summary

本议定书提供了运行卵子排斥实验的指导方针: 概述了绘制实验鸡蛋模型的方法, 以模拟天然鸟卵的颜色, 进行实地调查, 分析收集到的数据。该协议为进行类似的鸡蛋排斥实验提供了统一的方法。

Abstract

育雏的寄生虫产卵在其他女性的巢, 让主人的父母孵化和后方他们的幼仔。研究育雏寄生虫如何操纵宿主, 以提高他们的幼仔和寄主如何检测寄生提供了重要的见解, 在共同进化生物学领域。育雏寄生虫, 如杜鹃和牛鹂, 获得了进化的优势, 因为他们不必支付养育自己的幼仔的成本。然而, 这些成本选择宿主防御的所有发展阶段的寄生虫, 包括鸡蛋, 他们的幼鸟, 和成人。抗鸡蛋实验是研究宿主防御的最常用方法。在这些实验中, 研究者将实验鸡蛋放在宿主巢中, 并监视宿主的反应方式。颜色经常纵 , 并且期望是卵子歧视的可能性和寄主和实验性蛋的不同程度是正相关的。本文从描述创建一致卵色的方法出发, 对实验结果进行分析, 以此为指导进行鸡蛋排斥实验。特别注意一种新的方法, 涉及独特的彩色鸡蛋沿颜色梯度, 有潜力探讨颜色偏差的主机识别。没有标准化, 就不可能以有意义的方式比较研究结果;在这个领域内的标准协议将允许越来越准确和可比的结果, 进一步的实验。

Introduction

育雏寄生虫产卵在其他物种的巢, 然后可以提高他们的幼仔和支付与父母照顾1,2,3相关的费用。这种欺骗行为, 以骗取宿主的寄生虫和侦查, 以检测寄生虫的一部分, 对两个行为者提供强烈的选择性压力。在一些鸟类育雏寄生的情况下, 寄主对不同的寄生卵的识别选择了模拟宿主卵的寄生虫, 这就产生了寄主和寄生虫之间的进化军备竞赛4。研究巢寄生是重要的, 因为它是一个模型系统的研究共同进化动力学和决策在野外5。鸡蛋排斥实验是研究鸟类巢寄生的最常用方法之一, 是生态学家研究6种种间相互作用的重要工具。

在卵子排斥实验过程中, 研究人员通常引入天然或模型卵, 并评估宿主在标准化时期对这些实验卵的反应。这种实验可以涉及在巢7之间交换真正的鸡蛋 (在外观上变化), 或染色或油漆真正的鸡蛋表面 (可选添加模式), 并返回他们原来的巢8, 或生成模型鸡蛋,操纵的特性, 如颜色9, 斑点10, 大小11, 和/或形状12。宿主对不同外观的鸡蛋的反应, 可以提供有价值的洞察他们所使用的信息内容, 以达到一个鸡蛋排斥决定13和只是如何不同的鸡蛋需要得到一个反应14。最优接受阈值理论15指出, 主机应平衡错误接受寄生卵子的风险 (接受错误) 或错误地删除自己的卵子 (拒绝错误), 通过检查他们自己的鸡蛋之间的差异 (或这些卵的内部模板) 和寄生蛋。因此, 一个接受阈值存在的范围之外, 主机决定刺激是太不同的容忍。当寄生风险较低时, 接受误差的风险低于寄生风险高;因此, 决策是特定于上下文的, 当感知到的风险改变141617时, 就会适当地转移。

最优接受阈值理论假定宿主和寄生表型的持续变化决定宿主的基础决策。因此, 测量寄主对不同寄生虫表型的反应是必要的, 以确定宿主种群 (其自身的表型变化) 对一系列寄生形式的耐受程度。然而, 几乎所有先前的研究都依赖于分类鸡蛋颜色和 maculation 处理 (例如, 模拟/不模仿)。只有当寄主蛋壳表型没有变化, 这不是一个生物学上的实际期望, 所有的反应是直接可比的 (无论模仿程度)。否则, 一个 “模拟” 蛋模型将会有所不同, 它是如何相似的宿主鸡蛋内和人口之间, 这可能会导致混淆, 当比较调查结果18。理论表明, 宿主的决定是根据寄生蛋和他们自己的14之间的区别, 不一定是特定的寄生蛋颜色。因此, 使用单卵模型不是一个理想的方法来测试假设的主机决定阈值或歧视能力, 除非只是明显的差异 (以下 JND) 之间的鸡蛋模型类型和个人宿主鸡蛋颜色是变量的兴趣。这也适用于实验研究, 交换或添加天然蛋, 以测试主机响应的自然范围的颜色19。然而, 虽然这些研究确实允许变异的寄主和寄生虫表型, 他们是有限的自然变异发现在性状6, 特别是当使用同种卵7

相比之下, 那些制造各种颜色的人造蛋的研究人员不受自然变异的限制 (例如, 他们可以调查对 superstimuli20的反应), 让他们去探索寄主感知6的极限。最近的研究使用了新的技术来测量宿主的反应在一个表型范围内, 通过画实验蛋设计, 以匹配和超过自然范围的变化, 蛋壳9和专色21。研究宿主对带有颜色渐变的鸡蛋的反应可以揭示潜在的认知过程, 因为理论预测, 如接受阈值15或协同进化特别是模仿4, 是基于持续的差异性状。例如, 通过使用这种方法, Dainson21建立了当蛋壳地面着色和斑点着色之间的色对比更高时, 美国罗宾鸫 migratorius倾向于强烈拒绝蛋。这个发现提供了宝贵的洞察力如何这个宿主处理信息, 在这种情况下通过发现, 以决定是否删除寄生蛋。通过自定义颜料混合物, 研究人员可以精确地操纵实验鸡蛋颜色和宿主卵颜色之间的相似性, 同时标准化其他混杂因素, 如斑点模式10, 蛋大小22和鸡蛋形状23

为了鼓励进一步的复制和 metareplication24的经典和最近的卵子排斥工作, 重要的是, 科学家使用的方法, 标准化跨系统系统 (不同的寄主物种)7,22,空间 (不同的寄主人口)7,22,25,26和时间 (不同的繁殖季节)7,22,25,26 ,27, 很少做。未标准化28的方法后来被证明导致 artefactual 结果29,30。本文是一组指导研究人员试图复制这种类型的卵子排斥实验, 检查对持续变化的反应, 并强调了一些重要的方法论概念: 控制巢的重要性,先验假说, metareplication, pseudoreplication, 色谱分析。尽管在禽类寄主-寄生虫共同进化领域控制的卵子排斥实验还没有全面的协议存在。因此, 这些准则将是提高实验室间和内部重复性的宝贵资源, 因为任何假说的真正检验都在 metareplication,在系统系统、空间和时间24中重复整个研究, 这只有在使用一致方法293031时才能有意义地完成。

Protocol

这里描述的所有方法都已获得长岛大学 IACUC 机构动物保育和使用委员会的批准。 1. 混合丙烯酸颜料 混合蛋壳的地面着色, 这是颜色, 将统一覆盖整个蛋壳表面。下面的食谱将使50克油漆, 这将填补一个小超过两个22毫升铝漆管。 产生蓝绿色, 代表蓝绿色蛋壳 (如美国migratorius蛋壳), 使用18.24 克的钴绿松, 20.77 克钛白色6.52 克钴绿色, 2.86 克…

Representative Results

生成五颜六色的鸡蛋模型 自定义涂料混合物和天然卵的反射光谱如图 1A所示。在巢寄生研究中使用的颜料混合物应与光谱形状 (颜色) 和震级 (亮度) 的自然反射率测量紧密对应。如果达到这个目标, 实验鸡蛋的颜色应该被寄主视为天然的蛋色。为了评估主机识别, 应将这些反射率?…

Discussion

虽然卵子排斥实验是研究育雏寄生虫-宿主共同进化66的最常见方法, 但缺乏标准化材料、技术或协议的协同努力。这对于 meta 分析尤其成问题。据我们所知, 目前还没有对宿主卵子排斥的 meta 分析控制了研究6768中的方法学差异, 包括被认为是模仿的或非模仿的。这是一个主要的问题, 因为模仿 (按人体标准) 鸡蛋可以被主机拒绝比看似?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

咩的资金来自伊利诺斯州大学的 HJ–香槟分校的教授。此外, 为了供资, 我们感谢人类前沿科学项目 (M.E.H. 和 T.G.) 和捷克共和国的欧洲社会基金和国家预算。1.07/2.3. 00/30.0041 (T.G.)。我们感谢海洋光学, 以覆盖出版成本。

Materials

Replicator Mini + Makerbot
Professional Acrylic Paint Cobalt Turquoise Light Winsor & Newton 28382
Professional Acrylic Paint Titanium White Winsor & Newton 28489
Professional Acrylic Paint Cobalt Green Winsor & Newton 28381
Professional Acrylic Paint Cobalt Turquoise Winsor & Newton 28449
Professional Acrylic Paint Burnt Umber Winsor & Newton 28433
Professional Acrylic Paint Red Iron Oxide Winsor & Newton 28486
Professional Acrylic Paint Cadmium Orange Winsor & Newton 28437
Professional Acrylic Paint Raw Umber Light Winsor & Newton 28391
Professional Acrylic Paint Yellow Ochre Winsor & Newton 28491
Professional Acrylic Paint Mars Black Winsor & Newton 28460
Paint Brush Utrecht 206-FB Filbert brush
Paint Brush Utrecht 206-F Flat brush
Hair Dryer Oster 202
Fiber optic cables Ocean Optics Inc. OCF-103813 1 m custom bifurcating fiber optic assembly with blue zip tube (PVDF), 3.8mm nominal OD jeacketing and 2 legs
Spectrometer Ocean Optics Inc. Jaz Spectrometer unit with a 50 um slit width, installed with a 200-850 nm detector (DET2B-200-850), and grating option # 2.
Battery and SD card module for spectrometer Ocean Optics Inc. Jaz-B
Light source Ocean Optics Inc. Jaz-PX A pulsed xenon light source
White standard Ocean Optics Inc. WS-1-SL made from Spectralon
OHAUS Adventurer Pro Scale OHAUS AV114C A precision microbalance
Gemini-20 portable scale AWS Gemini-20 A standard scale
Empty Aluminum Paint Tubes (22 ml) Creative Mark NA
Telescopic mirror SE 8014TM
GPS Garmin Oregon 600
220-grit sandpaper 3M 21220-SBP-15 very fine sandpaper
400-grit sandpaper 3M 20400-SBP-5 very fine sandpaper
color analysis software: ‘pavo’, an R package for use in, R: A language and environment for statistical computing v 1.3.1 https://cran.r-project.org/web/packages/pavo/index.html
UV clear transparent Flock off! UV-001 A transparent ultraviolet paint
Plastic sandwich bags Ziploc Regular plastic sandwich bags from Ziploc that can be purchased at the supermarket.
Kimwipes Kimberly-Clark Professional 34120 11 x 21 cm kimwipes
Toothbrush Colgate Toothbrush

Riferimenti

  1. Davies, N. B., Brooke, M. d. e. L. An experimental study of co-evolution between the cuckoo, Cuculus canorus, and its hosts. I. Host egg discrimination. Journal of Animal Ecology. 58 (1), 207-224 (1989).
  2. Feeney, W. E., Welbergen, J. A., Langmore, N. E. Advances in the study of coevolution between avian brood parasites and their hosts. Annu Rev Ecol Evol Syst. 45, 227-246 (2014).
  3. Kilner, R. M., Madden, J. R., Hauber, M. E. Brood parasitic cowbird nestlings use host young to procure resources. Science. 305 (5685), 877-879 (2004).
  4. Dawkins, R., Krebs, J. R. Arms races between and within species. Proc R Soc Lond B. 205, 489-511 (1979).
  5. Wyllie, I. . The cuckoo. , (1981).
  6. Hauber, M. E., et al. The value of artificial stimuli in behavioral research: making the case for egg rejection studies in avian brood parasitism. Ethology. 121 (6), 521-528 (2015).
  7. Samas, P., Hauber, M. E., Cassey, P., Grim, T. Host responses to interspecific brood parasitism: a by-product of adaptations to conspecific parasitism?. Front Zool. 11 (1), 34 (2014).
  8. Bán, M., Moskát, C., Barta, Z., Hauber, M. E. Simultaneous viewing of own and parasitic eggs is not required for egg rejection by a cuckoo host. Behav Ecol. 24 (4), 1014-1021 (2013).
  9. Hanley, D., et al. Egg discrimination along a gradient of natural variation in eggshell coloration. Proc R Soc B. 284 (1848), 20162592 (2017).
  10. Moskat, C., et al. Discordancy or template-based recognition? Dissecting the cognitive basis of the rejection of foreign eggs in hosts of avian brood parasites. J Exp Biol. 213 (11), 1976-1983 (2010).
  11. Marchetti, K. Egg rejection in a passerine bird: size does matter. Anim Behav. 59, 877-883 (2000).
  12. Zölei, A., Hauber, M. E., Geltsch, N., Moskát, C. Asymmetrical signal content of egg shape as predictor of egg rejection by great reed warblers, hosts of the common cuckoo. Behaviour. 149 (3-4), 391-406 (2012).
  13. Rothstein, S. I. Mechanisms of avian egg recognition: which egg parameters elicit responses by rejecter species?. Behav Ecol Sociobiol. 11 (4), 229-239 (1982).
  14. Davies, N. B., Brooke, M. d. e. L., Kacelnik, A. Recognition errors and probability of parasitism determine whether reed warblers should accept or reject mimetic cuckoo eggs. Proc R Soc B. 263 (1), 925-931 (1996).
  15. Reeve, H. K. The evolution of conspecific acceptance thresholds. Am Nat. 133 (3), 407 (1989).
  16. Mermoz, M. E., Haupt, C., Fernández, G. J. Brown-and-yellow marshbirds reduce their acceptance threshold of mimetic brood parasite eggs in the presence of non-mimetic eggs. J Ethol. 34 (1), 65-71 (2015).
  17. Hauber, M. E., Moskát, C., Bán, M. Experimental shift in hosts’ acceptance threshold of inaccurate-mimic brood parasite eggs. Biol Lett. 2 (2), 177-180 (2006).
  18. Grim, T. Mimicry vs. similarity: which resemblances between brood parasites and their hosts are mimetic and which are not?. Biol J Linn Soc. 84 (1), 69-78 (2005).
  19. Lahti, D. C. The limits of artificial stimuli in behavioral research: the Umwelt gamble. Ethology. 121 (4), 529-537 (2015).
  20. Alvarez, F. Attractive non-mimetic stimuli in Cuckoo Cuculus canorus eggs. Ibis. 141, 142-144 (1999).
  21. Dainson, M., Hauber, M. E., López, A. V., Grim, T., Hanley, D. Does contrast between eggshell ground and spot coloration affect egg rejection?. Sci Nat. 104, 54 (2017).
  22. Grim, T., et al. Constraints on host choice: why do parasitic birds rarely exploit some common potential hosts?. J Anim Ecol. 80 (3), 508-518 (2011).
  23. Underwood, T. J., Sealy, S. G. Influence of shape on egg discrimination in American robins and gray catbirds. Ethology. 112, 164-173 (2006).
  24. Johnson, D. H. The importance of replication in wildlife research. J Wildl Manage. 66 (4), 919-932 (2002).
  25. Stokke, B. G., et al. Predictors of resistance to brood parasitism within and among reed warbler populations. Behav Ecol. 19 (3), 612-620 (2008).
  26. Soler, J. J., Martínez, J. G., Soler, M., Pape Møller, A. Coevolutionary interactions in a host-parasite system. Ecol Lett. 4, 470-476 (2001).
  27. Thorogood, R., Davies, N. B. Reed warbler hosts fine-tune their defenses to track three decades of cuckoo decline. Evolution. 67, 3545-3555 (2013).
  28. Robert, M., Sorci, G. Rapid increase of host defence against brood parasites in a recently parasitized area: the case of village weavers in Hispaniola. Proc R Soc B. 266, 941-946 (1999).
  29. Lahti, D. C. Evolution of bird eggs in the absence of cuckoo parasitism. Proc Natl Acad Sci U S A. 102 (50), 18057-18062 (2005).
  30. Lahti, D. C. Persistence of egg recognition in the absence of cuckoo brood parasitism: pattern and mechanism. Evolution. 60 (1), 157-168 (2006).
  31. Grim, T., Stokke, B. G., Weis, J. S., Sol, D. In the light of introduction: Importance of introduced populations for the study of brood parasite-host coevolution. Biological invasions and animal behaviour. , 133-157 (2016).
  32. Igic, B., et al. Using 3D printed eggs to examine the egg-rejection behaviour of wild birds. PeerJ. 3, e965 (2015).
  33. Maia, R., Eliason, C. M., Bitton, P., Doucet, S. M., Shawkey, M. D. pavo: an R package for the analysis, visualization and organization of spectral data. Methods Ecol Evol. 4 (10), 906-913 (2013).
  34. Hart, N. S., Vorobyev, M. Modelling oil droplet absorption spectra and spectral sensitivities of bird cone photoreceptors. J Comp Physiol A. 191 (4), 381-392 (2005).
  35. Govardovskii, V. I., Fyhrquist, N., Reuter, T., Kuzmin, D. G., Donner, K. In search of the visual pigment template. Vis Neurosci. 17, 509-528 (2000).
  36. Vorobyev, M., Osorio, D., Bennett, A. T. D., Marshall, N. J., Cuthill, I. C. Tetrachromacy, oil droplets and bird plumage colours. J Comp Physiol A. 183 (5), 621-633 (1998).
  37. Endler, J. A., Mielke, P. W. Comparing entire colour patterns as birds see them. Biol J Linn Soc. 86 (4), 405-431 (2005).
  38. Hart, N. S. The visual ecology of avian photoreceptors. Prog Retin Eye. 20 (5), 675-703 (2001).
  39. Hart, N. S. Vision in the peafowl (Aves: Pavo cristatus). J Exp Biol. 205 (24), 3925-3935 (2002).
  40. Hart, N. S., Partridge, J. C., Cuthill, I. C., Bennett, A. T. D. Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: the blue tit (Parus caeruleus L.) and the blackbird (Turdus merula L). J Comp Physiol A. 186 (4), 375-387 (2000).
  41. Stoddard, M. C., Prum, R. O. Evolution of avian plumage color in a tetrahedral color space: a phylogenetic analysis of new world buntings. Am Nat. 171 (6), 755-776 (2008).
  42. Vorobyev, M., Osorio, D. Receptor noise as a determinant of colour thresholds. Proc R Soc Lond B. 265 (1394), 351-358 (1998).
  43. Siddiqi, A., Cronin, T. W., Loew, E. R., Vorobyev, M., Summers, K. Interspecific and intraspecific views of color signals in the strawberry poison frog Dendrobates pumilio. J Exp Biol. 207, 2471-2485 (2004).
  44. Olsson, P., Lind, O., Kelber, A. Bird colour vision: behavioural thresholds reveal receptor noise. J Exp Biol. 218, 184-193 (2015).
  45. Pike, T. W. Preserving perceptual distances in chromaticity diagrams. Behav Ecol. 23, 723-728 (2012).
  46. Underwood, T. J., Sealy, S. G. Behavior of warbling vireos ejecting real and artificial cowbird eggs. Wilson J Ornithol. 123 (2), 395-400 (2011).
  47. Rohwer, S., Spaw, C. D. Evolutionary lag versus bill-size constraints: a comparative study of the acceptance of cowbird eggs by old hosts. Evol Ecol. 2 (1), 27-36 (1988).
  48. Martin-Vivaldi, M., Soler, M., Møller, A. P. Unrealistically high costs of rejecting artificial model eggs in cuckoo Cuculus canorus hosts. J Avian Biol. 3 (2), 295-301 (2002).
  49. Samaš, P., Heryán, J., Grim, T. How does urbanization affect dispersal in Eurasian blackbirds (Turdus merula)?. Sylvia. 49, 21-38 (2013).
  50. Baicich, P. J., Harrison, C. J. O. . A guide to the nests, eggs, and nestlings of North American birds. , (1997).
  51. Hanley, D., Samaš, P., Heryán, J., Hauber, M. E., Grim, T. Now you see it, now you don’t: flushing hosts prior to experimentation can predict their responses to brood parasitism. Sci Rep. 5 (1), 9060 (2015).
  52. Grim, T., Samaš, P., Hauber, M. The repeatability of avian egg ejection behaviors across different temporal scales, breeding stages, female ages and experiences. Behav Ecol Sociobiol. 68 (5), 749-759 (2014).
  53. Hanley, D., et al. Dynamic egg color mimicry. Ecol Evol. 6 (12), 4192-4202 (2016).
  54. Hanley, D., Samaš, P., Hauber, M. E., Grim, T. Who moved my eggs? An experimental test of the egg arrangement hypothesis for the rejection of brood parasitic eggs. Anim Cogn. 18 (1), 299-305 (2015).
  55. Samaš, P., et al. Ecological predictors of reduced avian reproductive investment in the southern hemisphere. Ecography. 36 (7), 809-818 (2013).
  56. Bolker, B. M. Linear and generalized linear mixed models. Ecol Stat Contemp theory Appl. , 309-334 (2015).
  57. Nakagawa, S., Johnson, P. C. D., Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J R Soc Interface. 14 (134), 20170213 (2017).
  58. Nagelkerke, N. J. D. A note on a general definition of the coefficient of determination. Biometrika. 78 (3), 691-692 (1991).
  59. Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A., Smith, G. M. . Mixed effects models and extensions in ecology with R. Stat Biol Heal. , (2009).
  60. Grafen, A., Hails, R. . Modern statistics for the life sciences. , (2002).
  61. Zuur, A. F., Ieno, E. N., Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol. 1 (1), 3-14 (2010).
  62. Christensen, R. H. B., Hansen, M. K. . binomTools: Performing diagnostics on binomial regression models. , (2011).
  63. Lotem, A., Nakamura, H., Zahavi, A. Constraints on egg discrimination and cuckoo-host co-evolution. Anim Behav. 49 (5), 1185-1209 (1995).
  64. Burnham, K. P., Anderson, D. R. . Model selection and multimodel inference: a practical information-theoretic approach. 60, (2002).
  65. Whittingham, M. J., Stephens, P. A., Bradbury, R. B., Freckleton, R. P. Why do we still use stepwise modelling in ecology and behaviour?. J Anim Ecol. 75 (5), 1182-1189 (2006).
  66. Hanley, D., Grim, T., Cassey, P., Hauber, M. E. Not so colourful after all: eggshell pigments constrain avian eggshell colour space. Biol Lett. 11 (5), 20150087 (2015).
  67. Fecheyr-Lippens, D. C., et al. The cuticle modulates ultraviolet reflectance of avian eggshells. Biol Open. 4, 753-759 (2015).
  68. Hanley, D., Grim, T., Cassey, P., Hauber, M. E. Data from: Not so colourful after all: eggshell pigments constrain avian eggshell colour space. Dryad Digital Repos. , (2015).
  69. Hanley, D., et al. Data from: Egg discrimination along a gradient of natural variation in eggshell coloration. Dryad Digital Repos. , (2017).
  70. Grim, T. Equal rights for chick brood parasites. Ann Zool Fennici. 44 (March), 1-7 (2007).
  71. Medina, I., Langmore, N. E. The costs of avian brood parasitism explain variation in egg rejection behaviour in hosts. Biol Lett. 11 (7), 20150296 (2015).
  72. Soler, M. Long-term coevolution between avian brood parasites and their hosts. Biol Rev. 89 (3), 688-704 (2014).
  73. Cassey, P., Honza, M., Grim, T., Hauber, M. E. The modelling of avian visual perception predicts behavioural rejection responses to foreign egg colours. Biol Lett. 4 (5), 515-517 (2008).
  74. Hale, K., Briskie, J. V. Response of introduced European birds in New Zealand to experimental brood parasitism. J Avian Biol. 38 (2), 198-204 (2007).
  75. Igic, B., et al. Detecting pigments from colourful eggshells of extinct birds. Chemoecology. 20, 43-48 (2010).
  76. Igic, B., et al. A shared chemical basis of avian host-parasite egg colour mimicry. Proc R Soc Lond B. 279 (1731), 1068-1076 (2012).
  77. Yang, C., et al. Coevolution in action: disruptive selection on egg colour in an avian brood parasite and its host. PLoS One. 5 (5), 1-8 (2010).
  78. Stoddard, M. C., Stevens, M. Avian vision and the evolution of egg color mimicry in the common cuckoo. Evolution. 65 (7), 2004-2013 (2011).
  79. Honza, M., Polačiková, L. Experimental reduction of ultraviolet wavelengths reflected from parasitic eggs affects rejection behaviour in the blackcap Sylvia atricapilla. J Exp Biol. 211 (15), 2519-2523 (2008).
check_url/it/57512?article_type=t

Play Video

Citazione di questo articolo
Canniff, L., Dainson, M., López, A. V., Hauber, M. E., Grim, T., Samaš, P., Hanley, D. Probing the Limits of Egg Recognition Using Egg Rejection Experiments Along Phenotypic Gradients. J. Vis. Exp. (138), e57512, doi:10.3791/57512 (2018).

View Video