Summary

基于琼脂糖组织模拟光学幽灵的漫反射光谱研究

Published: August 22, 2018
doi:

Summary

在这里, 我们演示了如何用琼脂糖为基础的组织模仿光学幽灵, 以及如何使用一个集成球体的传统光学系统来确定它们的光学特性。

Abstract

本协议描述如何制作基于琼脂糖的组织模拟幽灵, 并演示如何使用一个集成球体的传统光学系统来确定它们的光学特性。利用宽带白光光源、光导、消色差透镜、积分球、样品架、光纤探针等方法, 建立了漫反射率和总透射率谱采集的测量系统, 以及多通道光谱仪。一种由两个矩形丙烯酸片和 U 形丙烯酸片组成的丙烯酸模, 用于制造表皮幻影和全血的真皮幻影。硫酸钠钠 (Na2S2O4) 溶液在真皮幻影中的应用使研究人员能够 deoxygenate 在真皮幻影中分布的红血球中的血红蛋白。采用积分球光谱仪测量的漫反射率和总透射率谱进行了反蒙特卡罗模拟, 确定了µ(λ) 的吸收系数谱和减小散射系数谱µ每层幻像的s‘ (λ)。通过在真皮幻影上堆积表皮幻影, 可以模拟人体皮肤组织漫反射的两层幻影。

Introduction

光学幻影是模仿生物组织光学特性的物体, 在生物医学光学领域得到了广泛的应用。它们的设计使光学特性, 如光散射和吸收系数, 与活体人体和动物组织相匹配。光学幽灵一般用于以下目的: 模拟生物组织中的光传输, 校准新开发的光学系统设计, 评估现有系统的质量和性能, 比较性能在系统之间, 并验证光学方法的能力, 以量化的光学性质1,2,3,4,5。因此, 制造光学幽灵需要易于获取的物质、简单的制造过程、高重现性和光学稳定性。

各种类型的光学幽灵用不同的基础材料, 如水悬浮6, 凝胶凝胶7, 琼脂糖凝胶8,9,10, 聚丙烯酰胺凝胶11, 树脂12, 13,14,15,16, 室温硫化硅胶17已在以前的文献报道。据报道, 凝胶和海藻酸盐凝胶是有用的光学幽灵与异构结构18。海藻酸盐幽灵有一个适当的机械和热稳定性, 以评估光热效应, 如激光消融研究和激光高温研究18。琼脂糖凝胶具有制造异质结构的能力, 其力学性能和物理性质在很长时间内稳定了18。高纯度琼脂糖凝胶具有极低的浊度和微弱的光吸收。因此, 用适当的光散射和吸收剂可以很容易地设计出基于琼脂糖的幽灵的光学特性。近年来, 苯乙烯-乙烯-丁烯-苯乙烯 (SEBS) 嵌段共聚物19和聚氯乙烯 (PVC) 凝胶20被报道为光学和光声技术的有趣的幻像材料。

高分子微球 7,12,21,22, 钛氧化物粉末1, 和脂乳剂23,24,25,26如牛奶和脂质乳剂用作光散射剂, 而黑色墨水2728和分子染料2930被用作光吸收器。大多数活体器官的漫反射光谱主要由红细胞中含氧和脱氧血红蛋白的吸收支配。因此, 血红蛋白溶液31,32和全血8,9,10,33,36经常被用作轻吸收剂在一种漫反射光谱和多光谱成像的幽灵。

本文所描述的方法用于创建模仿生物组织中的光传输的光学幻影, 并对其光学特性进行表征。以两层光学幻影为例, 对人体皮肤组织的光学特性进行了模拟。这种方法在替代技术上的优点是能够表示可见光到近红外波长区域内活体生物组织的漫反射光谱, 以及使用简便可得的简单性。材料和常规光学仪器。因此, 利用该方法制作的光学幽灵, 对于基于漫反射光谱和多光谱成像的光学方法的发展具有一定的参考价值。

Protocol

1. 传统漫反射和总透射光谱分析系统的构造 注: 利用宽带白光光源、光导、消色差透镜、积分球、样品架、光纤和多通道光谱仪构造漫反射和总透射光谱测量系统。光阱的作用是从反射光谱中去除镜面反射分量。积分球的样品持有者由安装板和带有弹簧的夹紧夹具组件组成, 它将样品固定在该端口上。将燕尾和弹簧夹紧组件从样品架上取下, 将聚苯乙烯泡沫塑料的手工立方底座?…

Representative Results

图 3显示了表皮幻影和真皮幻影的减少散射系数和吸收系数的代表性估计谱。图 3所示的结果是十测量反射率和透射率谱的平均值。减小的散射系数µs’具有广泛的散射光谱, 在较短的波长上表现出更高的震级。光谱特征对应于软组织的典型散射光谱。随着波长的增加, 表皮幻影µ的吸收系数呈?…

Discussion

该协议中最关键的一步是基材的温度控制。维持基材的温度从58到60摄氏度不等。如果温度超过70摄氏度, 则会发生脂质乳剂和全血的变性。因此, 幻影的光学特性将会恶化。如果温度小于40摄氏度, 基材将 ununiformly 胶体, 因此, 光散射和吸收剂将异种地分布在幻影。虽然基材保持在60摄氏度, 吸痰与注射器降低温度。当添加到血液溶液中时, 基材的温度降低到50摄氏度。

本文描述?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作的一部分是由日本促进科学学会 (25350520、22500401、15K06105) 和美国陆军贸易中心-PAC 研究和开发项目 (FA5209-15-P-0175, FA5209-16-P-0132) 资助的一项科研补助金资助的。

Materials

150-W halogen-lamp light source Hayashi Watch Works Co., Ltd, Tokyo, Japan LA-150SAE
Light guide Hayashi Watch Works Co., Ltd, Tokyo, Japan LGC1-5L1000
Integrating Sphere Labsphere Incorporated, North Sutton, NH, USA RT-060-SF
Port adapter Labsphere Incorporated, North Sutton, NH, USA PA-050-SMA-SF
Light trap Labsphere Incorporated, North Sutton, NH, USA LTRP-100-C
Spectralon white standard with 99% diffuse reflectance Labsphere Incorporated, North Sutton, NH, USA SRS-99-020
Optical fiber Ocean Optics Inc., Dunedin, Florida, USA P400-2-VIS-NIR
Miniature Fiber Optic Spectrometer Ocean Optics Inc., Dunedin, Florida, USA USB2000
Achromatic lens Chuo Precision Industrial Co.,Ltd, Tokyo, Japan ACL-50-75M
Intralipid Fresenius Kabi AB, Uppsala, Sweden Intralipid 10%
Coffee
(Blendy Mocha Blend Regular Coffee)
Ajinomoto AGF, Inc. Tokyo, Japan Unavailable
Whole blood Nippon Bio-Test Laboratories Inc. Saitama, Japan 0103-2
Agarose Nippon Genetics Co., Ltd, Tokyo, Japan NE-AG02
Cooking heater TOSHIBA CORPORATION Tokyo, Japan HP-103K

Riferimenti

  1. Pogue, B. W., Patterson, M. S. Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. Journal of Biomedical Optics. 11 (4), 041102 (2006).
  2. Cohen, G. Contrast–detail–dose analysis of six different computed tomographic scanners. Journal of Computer Assisted Tomography. 3 (2), 197-203 (1979).
  3. Seltzer, S. E., Swensson, R. G., Judy, P. F., Nawfel, R. D. Size discrimination in computed tomographic images. Effects of feature contrast and display window. Investigative Radiology. 23 (6), 455-462 (1988).
  4. Pifferi, A., et al. Performance assessment of photon migration instruments: the MEDPHOT protocol. Applied Optics. 44 (11), 2104-2114 (2005).
  5. Linford, J., Shalev, S., Bews, J., Brown, R., Schipper, H. Development of a tissue-equivalent phantom for diaphanography. Medical Physics. 13 (6), 869-875 (1986).
  6. Durkin, A. J., Jaikumar, S., Richardskortum, R. Optically dilute, absorbing, and turbid phantoms for fluorescence spectroscopy of homogeneous and inhomogeneous samples. Applied Spectroscopy. 47 (12), 2114-2121 (1993).
  7. Nishidate, I., Aizu, Y., Mishina, H. Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation. Journal of Biomedical Optics. 9 (4), 700-710 (2004).
  8. Nishidate, I., Maeda, T., Aizu, Y., Niizeki, K. Visualizing depth and thickness of a local blood region in skin tissue using diffuse reflectance images. Journal of Biomedical Optics. 12 (5), 054006 (2007).
  9. Nishidate, I., et al. Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera. Journal of Biomedical Optics. 16 (8), 086012 (2011).
  10. Bharathiraja, S., et al. Multi-modality tissue-mimicking phantom for thermal therapy. Physics in Medicine & Biology. 49 (13), 2767-2778 (2004).
  11. Firbank, M., Oda, M., Delpy, D. T. An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging. Physics in Medicine & Biology. 40 (5), 955-961 (1995).
  12. Hebden, J. C., Hall, D. J., Firbank, M., Delpy, D. T. Timeresolved optical imaging of a solid tissue-equivalent phantom. Applied Optics. 34 (34), 8038-8047 (1995).
  13. Firbank, M., Delpy, D. T. A phantom for the testing and calibration of near-infrared spectrometers. Physics in Medicine & Biology. 39 (9), 1509-1513 (1994).
  14. Sukowski, U., Schubert, F., Grosenick, D., Rinneberg, H. Preparation of solid phantoms with defined scattering and absorption properties for optical tomography. Physics in Medicine & Biology. 41, 1823-1844 (1996).
  15. Beaudry, S., P, Fabrication and characterization of a solid polyurethane phantom for optical imaging through scattering media. Applied Optics. 38 (19), 4247-4251 (1999).
  16. Lualdi, M., Colombo, A., Farina, B., Tomatis, S., Marchesini, R. A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine. Lasers in Surgery and Medicine. 28 (3), 237-243 (2001).
  17. Dabbagh, A., Abdullah, B. J., Ramasindarum, C., Abu Kasim, N. H. Tissue-mimicking gel phantoms for thermal therapy studies. Ultrasonic Imaging. 36 (4), 291-316 (2014).
  18. Cabrelli, L. C., Pelissari, P. I., Deana, A. M., Carneiro, A. A., Pavan, T. Z. Stable phantom materials for ultrasound and optical imaging. Physics in Medicine & Biology. 62 (2), 432-447 (2017).
  19. Vogt, W. C., Jia, C., Wear, K. A., Garra, B. S., Pfefer, T. J. Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties. Journal of Biomedical Optics. 21 (10), 101405 (2016).
  20. Bays, R., et al. Three-dimensional optical phantom and its application in photodynamic therapy. Lasers in Surgery and Medicine. 21 (3), 227-234 (1997).
  21. Ramella-Roman, J. C., Bargo, P. R., Prahl, S. A., Jacques, S. L. Evaluation of spherical particle sizes with an asymmetric illumination microscope. IEEE Journal of Selected Topics in Quantum Electronics. 9 (2), 301-306 (2003).
  22. Waterworth, M. D., Tarte, B. J., Joblin, A. J., van Doorn, T., Niesler, H. E. Optical transmission properties of homogenised milk used as a phantom material in visible wavelength imaging. Australasian Physical and Engineering Science in Medicine. 18 (1), 39-44 (1995).
  23. Moes, C. J., van Gemert, M. J., Star, W. M., Marijnissen, J. P., Prahl, S. A. Measurements and calculations of the energy fluence rate in a scattering and absorbing phantom at 633 nm. Applied Optics. 28 (12), 2292-2296 (1989).
  24. van Staveren, H. J., Moes, C. J., van Marie, J., Prahl, S. A., van Gemert, M. J. Light scattering in intralipid-10% in the wavelength range of 400-1100 nm. Applied Optics. 30 (31), 4507-4514 (1991).
  25. Flock, S. T., Jacques, S. L., Wilson, B. C., Star, W. M., Vangemert, M. J. C. Optical-properties of intralipid – a phantom medium for light-propagation studies. Lasers in Surgery and Medicine. 12 (5), 510-519 (1992).
  26. Madsen, S. J., Patterson, M. S., Wilson, B. C. The use of India ink as an optical absorber in tissue-simulating phantoms. Physics in Medicine & Biology. 37, 985-993 (1992).
  27. Cubeddu, R., Pifferi, A., Taroni, P., Torricelli, A., Valentini, G. A solid tissue phantom for photon migration studies. Physics in Medicine & Biology. 42 (10), 1971-1979 (1997).
  28. Ebert, B., et al. Near-infrared fluorescent dyes for enhanced contrast in optical mammography: phantom experiments. Journal of Biomedical Optics. 6 (2), 134-140 (2001).
  29. Sukowski, U., Schubert, F., Grosenick, D., Rinneberg, H. Preparation of solid phantoms with defined scattering and absorption properties for optical tomography. Physics in Medicine & Biology. 41, 1823-1844 (1996).
  30. Yoshida, K., Nishidate, I., Ishizuka, T., Kawauchi, S., Sato, S., Sato, M. Multispectral imaging of absorption and scattering properties of in vivo exposed rat brain using a digital red-green-blue camera. Journal of Biomedical Optics. 20 (5), 051026 (2015).
  31. Lo, J. Y., et al. A strategy for quantitative spectral imaging of tissue absorption and scattering using light emitting diodes and photodiodes. Optics Express. 17 (3), 1372-1384 (2009).
  32. Bednov, A., Ulyanov, S., Cheung, C., Yodh, A. G. Correlation properties of multiple scattered light: implication to coherent diagnostics of burned skin. Journal of Biomedical Optics. 9 (2), 347-352 (2004).
  33. Hull, E. L., Nichols, M. G., Foster, T. H. Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes. Physics in Medicine & Biology. 43 (11), 3381-3404 (1998).
  34. Kienle, A., Patterson, M. S., Ott, L., Steiner, R. Determination of the scattering coefficient and the anisotropy factor from laser Doppler spectra of liquids including blood. Applied Optics. 35 (19), 3404-3412 (1996).
  35. Srinivasan, S., Pogue, B. W., Jiang, S., Dehghani, H., Paulsen, K. D. Spectrally constrained chromophore and scattering NIR tomography improves quantification and robustness of reconstruction. Applied Optics. 44 (10), 1858-1869 (2004).
  36. . Glossary. Dark Noise Available from: https://oceanoptics.com/glossary/#d (2018)
  37. Friebel, M., Roggan, A., Müller, G., Meinke, M. Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions. Journal of Biomedical Optics. 11 (3), 34021 (2006).
  38. Nishidate, I., Aizu, Y., Mishina, H. Estimation of absorbing components in a local layer embedded in the turbid media on the basis of visible to near- infrared (VIS-NIR) reflectance spectra. Optical Review. 10 (5), 427-435 (2003).
  39. Friebel, M., Helfmann, J., Netz, U., Meinke, M. Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2000 nm. Journal of Biomedical Optics. 14 (3), 034001 (2009).
  40. Jacques, S. L., Glickman, R. D., Schwartz, J. A. Internal absorption coefficient and threshold for pulsed laser disruption of melanosomes isolated from retinal pigment epithelium. SPIE Conference Proceedings. 2681, 468-477 (1996).
  41. Park, J., Ha, M., Yu, M., Jung, B. Fabrication of various optical tissue phantoms by the spin-coating method. Journal of Biomedical Optics. 21 (6), 065008 (2016).
  42. . Skin Optics Available from: https://omlc.org/news/jan98/skinoptics.html (1998)
  43. Prahl, S. A., van Gemert, M. J. C., Welch, A. J. Determining the optical properties of turbid media by using the adding-doubling method. Applied Optics. 32 (4), 559-568 (1993).
  44. Hale, G. M., Querry, M. R. Optical constants of water in the 200-nm to 200-um wavelength region. Applied Optics. 12 (3), 555-563 (1973).
check_url/it/57578?article_type=t

Play Video

Citazione di questo articolo
Mustari, A., Nishidate, I., Wares, M. A., Maeda, T., Kawauchi, S., Sato, S., Sato, M., Aizu, Y. Agarose-based Tissue Mimicking Optical Phantoms for Diffuse Reflectance Spectroscopy. J. Vis. Exp. (138), e57578, doi:10.3791/57578 (2018).

View Video