Summary

En ny Tenorrhaphy Suture Teknik med væv manipuleret kollagen Graft at reparere store sene defekter

Published: December 10, 2021
doi:

Summary

I dette papir præsenterer vi en in vitro- og in situ-protokol for at reparere et senehul på op til 1,5 cm ved at fylde det med konstrueret kollagentransplantation. Dette blev udført ved at udvikle en modificeret sutur teknik til at tage den mekaniske belastning, indtil transplantatet modnes i værtsvævet.

Abstract

Kirurgisk håndtering af store senefejl med senetransplantationer er udfordrende, da der er et begrænset antal steder, hvor donorer let kan identificeres og anvendes. I øjeblikket er dette hul fyldt med sene auto-, allo-, xeno-eller kunstige grafts, men kliniske metoder til at sikre dem kan ikke nødvendigvis oversættes til dyr på grund af skalaen. For at evaluere nye biomaterialer eller studere en senetransplantation, der består af kollagentype 1, har vi udviklet en modificeret suturteknik for at hjælpe med at opretholde den konstruerede sene i overensstemmelse med senenenderne. Mekaniske egenskaber af disse grafts er ringere end den indfødte sene. For at indarbejde manipuleret sene i klinisk relevante modeller af lastet reparation blev der vedtaget en strategi for at aflaste den vævsudviklede senegraft og give mulighed for modning og integration af den konstruerede sene in vivo, indtil der blev dannet en mekanisk sund neo-sene. Vi beskriver denne teknik ved hjælp af inkorporering af kollagen type 1 væv manipuleret sene konstruere.

Introduction

Seneruptur kan forekomme på grund af ydre faktorer såsom traumatiske flænger eller overdreven belastning af senen. På grund af de ydre trækkræfter placeret på en sene reparation, et hul uundgåeligt former med de fleste sene reparation teknikker. I øjeblikket er senefejl / huller fyldt med auto-, allo-, xeno- eller kunstige grafts, men deres tilgængelighed er begrænset, og donorstedet er en kilde til sygelighed.

Den vævsudviklede tilgang til fremstilling af senetransplantation fra en naturlig polymer som kollagen har den karakteristiske fordel at være biokompatierbar og kan give vitale ekstracellulære matrixkomponenter (ECM) komponenter, der letter celleintegration. Men på grund af manglende fibrillarjustering er de mekaniske egenskaber ved den konstruerede sene (ET) ringere end den indfødte sene. For at øge de mekaniske egenskaber af den svagere kollagen er der blevet anvendt mange metoder, såsom fysisk krydsbinding under vakuum, UV-stråling og dehydrothermale behandlinger1. Også gennem kemiske krydsbinding med riboflavin, enzymatiske og ikke-enzymatiske metoder øget kollagentæthed og Young’s modulus af kollagen in vitro2,3. Men ved at tilføje krydsbindingsmidler kompromitteres kollagen biokompatibilitet, da undersøgelser har vist en 33% ændring i mekaniske egenskaber og 40% tab af celle levedygtighed3,4,5. Gradvis tilfald af tilpasning og mekanisk styrke kan opnås vedcyklisk belastning6; dette kan dog erhverves effektivt in vivo7.

For et at integrere in vivo og erhverve styrke uden behov for kemisk ændring, ville en tilgang være at bruge en stabiliserende sutur teknik til at holde den svagere konstruktion på plads. De fleste senereparationer er afhængige af suturdesignet for at holde senenende sammen; derfor kan en ændring af disse eksisterende teknikker være en logisk løsning8,9.

Indtil 1980’erne blev 2-strenget reparationer meget udbredt, men nyere kirurgisk litteratur beskriver brugen af 4 tråde, 6 tråde eller endda 8 tråde i reparation10,11. I 1985, Savage beskrevet 6-streng sutur teknikker med 6 ankerpunkter, og det var betydeligt stærkere end Bunnell sutur teknik, der bruger 4 tråde 12. Desuden er 8-strenges reparationer 43% stærkere end andre tråde i kadaver- og in situ-modeller, men disse reparationer praktiseres ikke bredt, da det bliver teknisk vanskeligt at reproducere reparationerne nøjagtigt13,14,15,16. Derfor vedrører et større antal kerne suturstrenge en proportional stigning i biomekaniske egenskaber ved den reparerede sene. Der er dog et tab af celle levedygtighed omkring suturpunkterne, og traumer fra overdreven suturering kan være på bekostning af senen, hvilket kan kompromittere senenhedning17. Sutur teknikker bør give en stærk geometrisk reparation, der er afbalanceret og relativt uelastisk at minimere senen gabende efter reparation. Derudover skal suturens placering og dens knuder placeres strategisk, for at de ikke kan forstyrre glidende, blodforsyning og heling, indtil der er opnået10,18.

For at fastslå muligheden for at sikre svagere ET-transplantat eller andet transplantatmateriale i mellem bristet sene, har vi udviklet en ny suturteknik, der kan aflaste transplantatet, så den kan modnes og gradvist integreres i værtsvævet in vivo.

Protocol

BEMÆRK: Eksperimentdesign og etisk godkendelse blev indhentet fra UCL Institutional Review Board (IRB). Alle forsøg blev udført i henhold til regulering af indenrigsministeriet og retningslinjer for dyr (videnskabelig procedure) Act 1986 med revideret lovgivning i EU-direktiv 2010/63/EU (2013). Kaniner blev inspiceret af en navngivet dyrlæge (NVS) regelmæssigt og to gange om dagen af en navngiven dyrepleje og velfærd officer (NACWO) (Som pr retningslinjer og regler for Home office). De viste ingen tegn på smerte, …

Representative Results

Vi har brugt kollagentransplantationer fremstillet af type I kollagen, da dette er det fremherskende protein, der findes i senen. Det udgør næsten 95% af den samlede kollagen i senen; derfor har kollagen udstillet alle ideelle egenskaber til at efterligne sene i vivo21,22. I denne undersøgelse blev den anvendte type I kollagen udvundet af rottehalesenen og op…

Discussion

I denne undersøgelse, væv manipuleret type I kollagen grafts blev valgt som en senetransplantation, fordi kollagen er en naturlig polymer og anvendes som et biomateriale til forskellige væv engineering applikationer27,28. Kollagen udgør også 60 % af den tørre senmasse, hvoraf 95 % er type 1 kollagen 21,29,30,31,</s…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Forfatterne vil gerne anerkende UCL for finansiering af dette projekt.

Materials

Rat tail type 1 Collagen  First Link, Birmingham, UK 60-30-810
prolene sutures 6-0 Ethicon Ltd, Edinburgh, U.K. EP8726H
prolene sutures 3-0 Ethicon Ltd, Edinburgh, U.K. D8911
Whatman filter paper SIGMA-ALDRICH  WHA10010155
Gibco DMEM, high glucose Thermo Fisher Scientific  11574486
Nylon mesh  Plastok (Meshes and Filtration) Ltd. NA

Riferimenti

  1. Wollensak, G., Spoerl, E., Seiler, T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. American Journal of Ophthalmology. 135, 620-627 (2003).
  2. Tanzer, M. L. Cross-Linking of Collagen. Science. 180, 561-566 (1973).
  3. Reiser, K., McCormick, R. J., Rucker, R. B. Enzymatic and nonenzymatic cross-linking of collagen and elastin. FASEB Journal. 6, 2439-2449 (1992).
  4. Kanungo, B. P., Gibson, L. J. Density-property relationships in collagen-glycosaminoglycan scaffolds. Acta Biomaterialia. 6, 344-353 (2010).
  5. Weadock, K. S., Miller, E. J., Bellincampi, L. D., Zawadsky, J. P., Dunn, M. G. Physical crosslinking of collagen fibers: comparison of ultraviolet irradiation and dehydrothermal treatment. Journal of Biomedical Materials Research. 29, 1373-1379 (1995).
  6. Kalson, N. S., et al. Slow Stretching That Mimics Embryonic Growth Rate Stimulates Structural and Mechanical Development of Tendon-Like Tissue In Vitro. Developmental Dynamics. 240, 2520-2528 (2011).
  7. Torigoe, K., et al. Mechanisms of collagen fibril alignment in tendon injury: from tendon regeneration to artificial tendon. Journal of Orthopaedic Research. 29, 1944-1950 (2011).
  8. Ketchum, L. D. Suture materials and suture techniques used in tendon repair. Hand Clinics. 1, 43-53 (1985).
  9. Lawrence, T. M., Davis, T. R. A biomechanical analysis of suture materials and their influence on a four-strand flexor tendon repair. The Journal of Hand Surgery. 30, 836-841 (2005).
  10. Strickland, J. W. Development of flexor tendon surgery: Twenty-five years of progress. The Journal of Hand Surgery. 25, 214-235 (2000).
  11. Moriya, K., et al. Clinical outcomes of early active mobilization following flexor tendon repair using the six-strand technique: short- and long-term evaluations. The Journal of Hand Surgery, European volume. , (2014).
  12. Savage, R. In vitro studies of a new method of flexor tendon repair. Journal of Hand Surgery. 10, 135-141 (1985).
  13. Uslu, M., et al. Flexor tendons repair: effect of core sutures caliber with increased number of suture strands and peripheral sutures. A sheep model. Orthopaedics & Traumatology: Surgery & Research : OTSR. 100, 611-616 (2014).
  14. Osei, D. A., et al. The Effect of Suture Caliber and Number of Core Suture Strands on Zone II Flexor Tendon Repair: A Study in Human Cadavers. Journal of Hand Surgery. 39, 262-268 (2013).
  15. Dovan, T. T., Ditsios, K. T., Boyer, M. I. Eight-strand core suture technique for repair of intrasynovial flexor tendon lacerations. Techniques in Hand & Upper Extremity Surgery. 7, 70-74 (2003).
  16. Silva, M. J., et al. The effects of multiple-strand suture techniques on the tensile properties of repair of the flexor digitorum profundus tendon to bone. The Journal of Bone and Joint surgery. 80, 1507-1514 (1998).
  17. Wong, J. K., Alyouha, S., Kadler, K. E., Ferguson, M. W., McGrouther, D. A. The cell biology of suturing tendons. Matrix Biology. 29, 525-536 (2010).
  18. Strickland, J. W. Flexor Tendon Injuries: II. Operative Technique. The Journal of the American Academy of Orthopaedic Surgeons. 3, 55-62 (1995).
  19. Brown, R. A., Wiseman, M., Chuo, C. B., Cheema, U., Nazhat, S. N. Ultrarapid Engineering of Biomimetic Materials and Tissues: Fabrication of Nano- and Microstructures by Plastic Compression. Advanced Functional Materials. 15, 1762-1770 (2005).
  20. Sawadkar, P., Alexander, S., Mudera, V. Tissue-engineered collagen grafts to treat large tendon defects. Regenerative Medicine. 9, 249-251 (2014).
  21. Evans, J. H., Barbenel, J. C. Structural and mechanical properties of tendon related to function. Equine veterinary journal. 7, 1-8 (1975).
  22. Riley, G. P., et al. Glycosaminoglycans of human rotator cuff tendons: changes with age and in chronic rotator cuff tendinitis. Annals of the Rheumatic Diseases. 53, 367-376 (1994).
  23. Bell, E., Ivarsson, B., Merrill, C. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proceedings of the National Academy of Sciences of the United States of America. 76, 1274-1278 (1979).
  24. Kim, H. M., et al. Technical and biological modifications for enhanced flexor tendon repair. The Journal of Hand Surgery. 35, 1031-1038 (2010).
  25. Kim, J. B., de Wit, T., Hovius, S. E., McGrouther, D. A., Walbeehm, E. T. What is the significance of tendon suture purchase. The Journal of Hand Surgery, European Volume. 34, 497-502 (2009).
  26. Sawadkar, P., et al. Development of a surgically optimized graft insertion suture technique to accommodate a tissue-engineered tendon in vivo. BioResearch Open Access. 2, 327-335 (2013).
  27. Hadjipanayi, E., et al. Mechanisms of structure generation during plastic compression of nanofibrillar collagen hydrogel scaffolds: towards engineering of collagen. Journal of Tissue Engineering and Regenerative Medicine. 5, 505-519 (2011).
  28. Micol, L. A., et al. High-density collagen gel tubes as a matrix for primary human bladder smooth muscle cells. Biomaterials. 32, 1543-1548 (2011).
  29. Lian Cen, L., Liu, W., Cui, L., Zhang, W., Cao, Y. Collagen Tissue Engineering: Development of Novel Biomaterials and applications. Pediatric Research. 63, 492-496 (2008).
  30. Harris, M. T., et al. Mesenchymal stem cells used for rabbit tendon repair can form ectopic bone and express alkaline phosphatase activity in constructs. Journal of Orthopaedic Research. 22, 998-1003 (2004).
  31. Butler, D. L., et al. The use of mesenchymal stem cells in collagen-based scaffolds for tissue-engineered repair of tendons. Nature Protocols. 5, 849-863 (2010).
  32. Cen, L., Liu, W., Cui, L., Zhang, W., Cao, Y. Collagen Tissue Engineering: Development of Novel Biomaterials and Applications. Pediatric Research. 63, 492-496 (2008).
  33. Yamaguchi, H., Suenaga, N., Oizumi, N., Hosokawa, Y., Kanaya, F. Will Preoperative Atrophy and Fatty Degeneration of the Shoulder Muscles Improve after Rotator Cuff Repair in Patients with Massive Rotator Cuff Tears. Advances in Orthopedics. 2012, 195876 (2012).
  34. Silver, F. H., Freeman, J. W., Seehra, G. P. Collagen self-assembly and the development of tendon mechanical properties. Journal of Biomechanics. 36, 1529-1553 (2003).
  35. Schneppendahl, J., et al. Initial stability of two different adhesives compared to suture repair for acute Achilles tendon rupture–a biomechanical evaluation. International Orthopaedics. 36, 627-632 (2012).
  36. Herbort, M., et al. Biomechanical comparison of the primary stability of suturing Achilles tendon rupture: a cadaver study of Bunnell and Kessler techniques under cyclic loading conditions. Archives of Orthopaedic and Trauma Surgery. 128, 1273-1277 (2008).
  37. Piskin, A., et al. Tendon repair with the strengthened modified Kessler, modified Kessler, and Savage suture techniques: a biomechanical comparison. Acta Orthopaedica et Traumatologica Turcica. 41, 238-243 (2007).
  38. de Wit, T., Walbeehm, E. T., Hovius, S. E., McGrouther, D. A. The mechanical interaction between three geometric types of nylon core suture and a running epitenon suture in repair of porcine flexor tendons. The Journal of Hand Surgery, European Volume. 38, 788-794 (2013).
  39. Trail, I. A., Powell, E. S., Noble, J. The mechanical strength of various suture techniques. Journal of Hand Surgery. 17, 89-91 (1992).
  40. Wong, J. K., Peck, F. Improving results of flexor tendon repair and rehabilitation. Plastic and Reconstructive Surgery. 134, 913-925 (2014).
  41. Amis, A. A. Absorbable sutures in tendon repair. Journal of Hand Surgery. 21, 286 (1996).
  42. Faggioni, R., de Courten, C. Short and long-term advantages and disadvantages of prolene monofilament sutures in penetrating keratoplasty. Klinische Monatsblatter fur Augenheilkunde. 200, 395-397 (1992).
  43. Wong, J. K., Cerovac, S., Ferguson, M. W., McGrouther, D. A. The cellular effect of a single interrupted suture on tendon. Journal of Hand Surgery. 31, 358-367 (2006).
  44. Savage, R., Risitano, G. Flexor tendon repair using a “six strand” method of repair and early active mobilisation. Journal of Hand Surgery. 14, 396-399 (1989).
  45. Okubo, H., Kusano, N., Kinjo, M., Kanaya, F. Influence of different length of core suture purchase among suture row on the strength of 6-strand tendon repairs. Hand Surgery. 20, 19-24 (2015).
  46. Noguchi, M., Seiler, J. G., Gelberman, R. H., Sofranko, R. A., Woo, S. L. In vitro biomechanical analysis of suture methods for flexor tendon repair. Journal of Orthopaedic Research. 11, 603-611 (1993).
  47. Aoki, M., Pruitt, D. L., Kubota, H., Manske, P. R. Effect of suture knots on tensile strength of repaired canine flexor tendons. Journal of Hand Surgery. 20, 72-75 (1995).
  48. Pruitt, D. L., Aoki, M., Manske, P. R. Effect of suture knot location on tensile strength after flexor tendon repair. The Journal of Hand Surgery. 21, 969-973 (1996).
  49. Khor, W. S., et al. Improving Outcomes in Tendon Repair: A Critical Look at the Evidence for Flexor Tendon Repair and Rehabilitation. Plastic and Reconstructive Surgery. 138, 1045-1058 (2016).
  50. Strickland, J. W. Flexor Tendon Injuries: I. Foundations of Treatment. The Journal of the American Academy of Orthopaedic Surgeons. 3, 44-54 (1995).
  51. Mashadi, Z. B., Amis, A. A. Strength of the suture in the epitenon and within the tendon fibres: development of stronger peripheral suture technique. Journal of Hand Surgery. 17, 172-175 (1992).
  52. Wade, P. J., Muir, I. F., Hutcheon, L. L. Primary flexor tendon repair: the mechanical limitations of the modified Kessler technique. Journal of Hand Surgery. 11, 71-76 (1986).
  53. Wade, P. J., Wetherell, R. G., Amis, A. A. Flexor tendon repair: significant gain in strength from the Halsted peripheral suture technique. Journal of Hand Surgery. 14, 232-235 (1989).
  54. Silfverskiold, K. L., May, E. J. Gap formation after flexor tendon repair in zone II. Results with a new controlled motion programme. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery / Nordisk Plastikkirurgisk forening [and] Nordisk Klubb for Handkirurgi. 27, 263-268 (1993).
  55. Silfverskiold, K. L., May, E. J., Tornvall, A. H. Gap formation during controlled motion after flexor tendon repair in zone II: a prospective clinical study. The Journal of Hand Surgery. 17, 539-546 (1992).
  56. Silfverskiold, K. L., May, E. J. Flexor tendon repair in zone II with a new suture technique and an early mobilization program combining passive and active flexion. The Journal of Hand Surgery. 19, 53-60 (1994).
  57. Pennington, D. G. Atraumatic retrieval of the proximal end of a severed digital flexor tendon. Plastic and Reconstructive Surgery. 60, 468-469 (1977).
  58. Lin, G. T., An, K. N., Amadio, P. C., Cooney, W. P. Biomechanical studies of running suture for flexor tendon repair in dogs. The Journal of Hand Surgery. 13, 553-558 (1988).
  59. Papandrea, R., Seitz, W. H., Shapiro, P., Borden, B. Biomechanical and clinical evaluation of the epitenon-first technique of flexor tendon repair. The Journal of Hand Surgery. 20, 261-266 (1995).
check_url/it/57696?article_type=t

Play Video

Citazione di questo articolo
Sawadkar, P., Wong, J., Mudera, V. A Novel Tenorrhaphy Suture Technique with Tissue Engineered Collagen Graft to Repair Large Tendon Defects. J. Vis. Exp. (178), e57696, doi:10.3791/57696 (2021).

View Video