Summary

Dynamisk proteomiska och miRNA analyser av Polysomes från isolerade mus hjärtat efter av Perfusion

Published: August 29, 2018
doi:

Summary

Här presenterar vi ett protokoll för att utföra polysome profilering på isolerade perfunderade mus hjärtat. Vi beskriver metoder för hjärtat perfusion, polysome profilering och analys av polysome fraktioner med avseende på mRNA, MicroRNA och det polysome proteomet.

Abstract

Studier i dynamiska förändringar i protein översättning kräver specialiserade metoder. Här undersökt vi förändringar i nyligen-synthesized proteiner som svar på ischemi och reperfusion använder isolerade perfunderade mus hjärtat tillsammans med polysome profilering. För att ytterligare förstå de dynamiska förändringarna i protein översättning, vi kännetecknas av mRNA som var lastade med cytosoliska ribosomer (polyribosomes eller polysomes) och också återvinnas mitokondriella polysomes och jämförs mRNA och protein distribution i den högeffektiv fraktioner (många ribosomer knutna till mRNA), låg effektivitet (färre ribosomer knutna) som också ingår mitokondriell polysomes och icke-översätta fraktioner. MicroRNA kan också associera med mRNA som översätts, vilket minskar effektiviteten i översättning, vi undersökt fördelningen av MicroRNA över fraktioner. Fördelningen av mRNA, MicroRNA och proteiner undersöktes under basala perfunderade förhållanden, i slutet av 30 min av globala utan flöde ischemi och efter 30 min reperfusion. Här presenterar vi de metoder som används för att utföra denna analys – i synnerhet metoden till optimering av protein utvinning från sackaros övertoningen, eftersom detta inte har beskrivits innan — och ge några representativa resultat.

Introduction

Hjärtat svarar på skadan av ischemi (I) och reperfusion (R) på ett dynamiskt sätt. Det finns dock lite insikt i akuta ändringar i proteinsyntesen under svaret. För att åtgärda detta, tog vi fördel av väletablerade metoden för polysome profilering1 för att identifiera ändringar i protein överflöd som återspeglar omfördelning av ribosomer och translationell reglerande faktorer från cytosolen till polysomes, och ökning av nyligen syntetiserade proteiner (nål-och sprututbyte). I inställningen av I / R, ökningen av nya proteinsyntesen inträffar i en tidsram som är oförenligt med transkription av nya mRNA2; discordance mellan mRNA-uttrycksnivåerna och protein överflöd har dessutom varit rapporterade3. Av dessa skäl valde vi att analysera förändringar i det dynamiska proteomet som återspeglas av protein översättning. Detta gör vi kvantifiera mRNA i polysome fraktioner och analysera protein sammansättningen i polysome fraktioner. Slutligen, eftersom mikroRNA (miRs) reglera tillgängligheten av mRNA för översättning och kan störa effektiviteten av protein översättning4,5, vi har granskat fördelningen av miRs i polysome fraktioner, med fokus på den svar till jag / R.

Vi valde att använda isolerade musmodell av perfusion och skördade vävnad under basala förhållanden av fortlöpande perfusion, efter 30 min globala utan flöde ischemi, och efter 30 min av ischemi följt av 30 min reperfusion. Vi sedan solubilized hjärtat vävnaden och separerade polysomes över en sackaros lutning, följt av proteomiska analys och selektiv upptäckt av mRNA och MicroRNA av PCR och microarray, respektive. Denna kombination av metoder representerar en kraftfull metod att förstå det dynamiska proteomet, som möjliggör samtidig identifiering av mRNA, miRNA, och nål-och sprututbyte, samt omfördelning av reglerande proteiner, miRNA och mRNA mellan nontranslating fraktioner, låg-effektivitet polysomes och högeffektiv polysomes (se figur 1). Insikter i dynamiska regleringen av denna process kommer att förlängas med ytterligare analys av fosforylering av reglerande faktorer t.ex eIF2α eller mTOR. Dessa individuella stegen nu beskrivs i detalj.

Protocol

Alla djurstudier var utförs i enlighet med institutionella riktlinjer och godkänts av institutionella djur vård och användning kommittén av Cedars-Sinai Medical Center. 1. av Perfusion av mus hjärta Av perfusion av mus hjärta med ischemi och reperfusion Administrera intraperitoneal pentobarbital natrium 70 mg/kg till vuxen mus (8 veckor gamla, hane, C57BL6/j). Bekräfta djup anestesi genom avsaknaden av uttag till tå nypa. Anticoagulate …

Representative Results

mRNA analysmRNA resultat kan uttryckas som en fördelning av en viss mRNA i respektive fraktion (figur 3A); för kvantifiering, kombinera polyribosomal översätta fraktioner och jämför med den icke-översätta fraktionen (figur 3B), presenterar ett förhållande av mRNA överflöd att översätta till nontranslating fraktioner. Ytterligare information kan fås genom att undersöka de högeffektiva polysome fraktio…

Discussion

Polysome profil analys möjliggör studiet av protein översättning genom att analysera den translationella delstaten en specifik mRNA eller hela transkriptom6,7. Det är också till stor hjälp när lokal översättning behöver studeras såsom synaptosomes8. Denna metod innebär traditionellt, separation av mono – och polyribosomes och den associerade mRNA på sackaros toning som kunde kopplas till genomisk eller proteomiska tekniker f?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

NIH P01 HL112730 (RAG, JVE), NIH R01 HL132075 (RAG, JVE), Barbra Streisand kvinnors hjärta Center (RAG, JVE), Dorothy och E. Phillip Lyon stol i molekylär kardiologi (RAG), Erika Glazer begåvad stol i kvinnans hjärthälsa (JVE) och tjeckiska vetenskapsakademin Institutionellt stöd RVO: 68081715 (MS).

Materials

Pentobarbital Vortech Phamaceuticals 9373 for euthansia
Heparin Sagent 103424 used in langendorff preparation
forceps Fine Science Tools 91110-10 used to hang the heart
Langendorff system Radnoti + home made n/a A 'four heart' system consisting of custom blown glass, tubing and water baths
NaCl Sigma S7653-5KG Krebs buffer and Sucrose gradient
KCl Sigma P5405 Krebs buffer and Lysis buffer
KH2PO4 Sigma P-5504 Krebs buffer
MgSO4 Sigma M7774-500G Krebs buffer
Glucose Sigma G5767 Krebs buffer
CaCl2 Sigma C1016-500G Krebs buffer
Sucrose powder Sigma S0389-1KG Sucrose gradient
MgCl2 Sigma 208337 Sucrose gradient and Lysis buffer
Tris-base Sigma T1503-1KG Sucrose gradient and Lysis buffer
Xylene Cyanole Sigma X-4126 Sucrose gradient
Cycloheximide Sigma-aldrich 239763 Sucrose gradient and Lysis buffer
RNaseOUT Life Technologies C00019 RNAse inhibitor for Lysis buffer
Igepal CA-360 (NP40) Sigma I3021 Lysis buffer
Protease Inhibitor Cocktail tablets, EDTA free Roche 5056489001
Tube, Thinwall, Ultra-Clear, 13.2 mL, 14 x 89 mm Beckman Coulter 344059
Ultracentrifuge Beckman LE-80K Ultracentrifugation of the gradients
Rotor Beckman SW41 Ultracentrifugation of the gradients
Biologic LP (pump) Biorad 731-8300 Fractionation of the gradients
BioFrac Biorad 741-0002 Fractionation of the gradients
Eppendorf RNA/DNA LoBind microcentrifuge tubes, 2 mL tube Sigma Z666513-100EA Gradient fraction and RNA extraction
TRIzol Reagent Life technologies AM9738 RNA extraction
Luciferase Control RNA Promega L4561 RNA extraction
Chloroform Fisher Scientific C606-4 RNA extraction
Glycogen, RNA grade Thermo Fisher Scientific R0551 RNA extraction
Isopropanol Sigma I9516 RNA extraction
Ethanol Sigma E7023-1L RNA extraction
iScript cDNA Synthesis Kit BioRad 170-8891 Reverse transcription
iTaq Universal SYBR Green Supermix BioRad 175-5122 Quantative PCR
miRNeasy Micro Kit (50) Qiagen 217084 Kit for total RNA isolation
miScript II RT Kit (50) Qiagen 218161 Kit for miRNA reverse transcription
miScript Sybr Green PCR Kit (200) Qiagen 218073 Kit for real-time PCR expression analysis of miRNAs
Centrifuge 5424R Eppendorf For centrifugation of 1.5ml or 2.0ml tubes at different temperatures. Max speed – 21130g
Centrifuge 5810R Eppendorf For real-time PCR plate centrifugation at different temperatures. Max speed – 2039g
My Cycler Thermal Cycler Bio-Rad For reverse transcription
CFX96 Real-Time System/C1000 Touch Thermal Cycler Bio-Rad For real-time PCR analysis
miRNeasy Serum/Plasma Spike-in Control Qiagen 219610 For quality control of RNA isolation
Hard-Shell 96-Well PCR Plates, low profile, thin wall, skirted, green/clear Bio-Rad HSP9641 For real-time PCR analysis
Microseal 'B' PCR Plate Sealing Film, adhesive, optical Bio-Rad MSB1001 For real-time PCR plate sealing
Research plus Single-Channel Pipette, Gray; 0.5-10 µL Eppendorf UX-24505-02 For pipetting
PIPETMAN Classic Pipets, P20 Gilson F123600G For pipetting
PIPETMAN Classic Pipets, P200 Gilson F144565 For pipetting
Rainin L-1000XLS Pipet-Lite XLS LTS Pipette 100-1000 µL Gilson 17011782 For pipetting
Glycogen, RNA grade Thermo Fisher Scientific R0551 Improves total RNA isolation efficiency
Posi-Click 1.7 mL Tubes, natural color Denville C2170 RNA isolation and storage; reagent mix
Thermal Cycling Tubes -0.2 mL Individual Caps, Standard 0.2 mL tubes with optically Denville C18098-4 (1000910) Reverse transcription reaction
Sharp 10 Precision barrier Tips Denville P1096-FR For pipetting
Sharp 20 Precision barrier Tips Denville P1121 For pipetting
Sharp 200 Precision barrier Tips Denville P1122 For pipetting
Tips LTS 1 mL Filter Rainin RT-L1000F For pipetting
miScript Primer Assay (200) Qiagen (it changes according to the miRNA) For real-time PCR analysis
Gradient Master ver 5.3 Model 108 BioComp Instruments For preparation of sucrose gradients
trichloroacetic acid Sigma Aldrich T6399
acetone Sigma Aldrich 650501
Tris hydrochloride Amresco M108
dithiothreitol Fisher Scientific BP172
iodoacetamide Gbiosciences RC-150
sequencing grade modified trypsine, porcine Promega V5111
ammonium bicarbonate BDH BDH9206
formic acid, Optima LC/MS Fisher Chemical A117
methanol, Optima LC/MS Fisher Chemical A454
acetonitrile, Optima LC/MS Fisher Chemical A996
Protein LoBind tubes 0.5 mL Eppendorf AG 22431064
Protein LoBind tubes 1.5 mL Eppendorf AG 22431081
HLB µElution plate 30 µm Oasis 186001828BA
SpeedVac concentrator Thermo Scientific Savant SPD2010
sonicator Qsonica Oasis180
centrifuge Thermo Scientific Sorvall Legend micro 21R
LC trap column PepMap 100 C18 Thermo Scientific 160454
LC separation column PepMap RSLC C18 Thermo Scientific 164536
mass spectrometer Thermo Scientific Orbitrap Elite ion trap mass spectrometer
MSConvert software ProteoWizard Toolkit
Sorcerer-SEQUEST software Sage-N Research, Inc.

Riferimenti

  1. Pourpirali, S., Valacca, C., Merlo, P., Rizza, S., D’Amico, S., Cecconi, F. Prolonged pseudohypoxia targets ambra1 mrna to p-bodies for translational repression. PLoS ONE. 10, e0129750 (2015).
  2. Andres, A. M., Tucker, K. C., Thomas, A., Taylor, D. J., Sengstock, D., Jahania, S. M., Dabir, R., Pourpirali, S., Brown, J. A., Westbrook, D. G., Ballinger, S. W., Mentzer, R. M., Gottlieb, R. A. Mitophagy and mitochondrial biogenesis in atrial tissue of patients undergoing heart surgery with cardiopulmonary bypass. JCI Insight. 2, e89303 (2017).
  3. Kislinger, T., Cox, B., Kannan, A., Chung, C., Hu, P., Ignatchenko, A., Scott, M. S., Gramolini, A. O., Morris, Q., Hallett, M. T., Rossant, J., Hughes, T. R., Frey, B., Emili, A. Global survey of organ and organelle protein expression in mouse: Combined proteomic and transcriptomic profiling. Cell. 125, 173-186 (2006).
  4. Kren, B. T., Wong, P. Y., Shiota, A., Zhang, X., Zeng, Y., Steer, C. J. Polysome trafficking of transcripts and micrornas in regenerating liver after partial hepatectomy. American Journal of Physiology. Gastrointestinal and Liver Physiology. 297, G1181-G1192 (2009).
  5. Gottlieb, R. A., Pourpirali, S. Lost in translation: Mirnas and mrnas in ischemic preconditioning and ischemia/reperfusion injury. Journal of Molecular and Cellular Cardiology. 95, 70-77 (2016).
  6. Coudert, L., Adjibade, P., Mazroui, R. Analysis of translation initiation during stress conditions by polysome profiling. Journal of Visualized Experiments. , (2014).
  7. Lorsch, J. Methods in enzymology. Laboratory methods in enzymology: Rna. Preface. Methods in Enzymology. 530, xxi (2013).
  8. Kuzniewska, B., Chojnacka, M., Milek, J., Dziembowska, M. Preparation of polysomal fractions from mouse brain synaptoneurosomes and analysis of polysomal-bound mrnas. Journal of Neuroscience Methods. 293, 226-233 (2018).
  9. He, S. L., Green, R. Polysome analysis of mammalian cells. Methods in Enzymology. 530, 183-192 (2013).
  10. Molotski, N., Soen, Y. Differential association of micrornas with polysomes reflects distinct strengths of interactions with their mrna targets. RNA. 18, 1612-1623 (2012).
  11. Maroney, P. A., Yu, Y., Fisher, J., Nilsen, T. W. Evidence that micrornas are associated with translating messenger rnas in human cells. Nature Structural and Molecular Biology. 13, 1102-1107 (2006).
  12. Paul, P., Chakraborty, A., Sarkar, D., Langthasa, M., Rahman, M., Bari, M., Singha, R. S., Malakar, A. K., Chakraborty, S. Interplay between mirnas and human diseases. Journal of Cellular Physiology. 233, 2007-2018 (2018).
  13. Rupaimoole, R., Slack, F. J. Microrna therapeutics: Towards a new era for the management of cancer and other diseases. Nature Reviews Drug Discovery. 16, 203-222 (2017).
  14. Nelson, P. T., Hatzigeorgiou, A. G., Mourelatos, Z. Mirnp:Mrna association in polyribosomes in a human neuronal cell line. RNA. 10, 387-394 (2004).
  15. Nottrott, S., Simard, M. J., Richter, J. D. Human let-7a mirna blocks protein production on actively translating polyribosomes. Nature Structural and Molecular Biology. 13, 1108-1114 (2006).
  16. Kim, J., Krichevsky, A., Grad, Y., Hayes, G. D., Kosik, K. S., Church, G. M., Ruvkun, G. Identification of many micrornas that copurify with polyribosomes in mammalian neurons. Proceedings of the National Academy of Sciences of the United States of America. , 360-365 (2004).
  17. Androsavich, J. R., Chau, B. N., Bhat, B., Linsley, P. S., Walter, N. G. Disease-linked microrna-21 exhibits drastically reduced mrna binding and silencing activity in healthy mouse liver. RNA. 18, 1510-1526 (2012).
  18. Kraushar, M. L., Thompson, K., Wijeratne, H. R., Viljetic, B., Sakers, K., Marson, J. W., Kontoyiannis, D. L., Buyske, S., Hart, R. P., Rasin, M. R. Temporally defined neocortical translation and polysome assembly are determined by the rna-binding protein hu antigen r. Proceedings of the National Academy of Sciences of the United States of America. , E3815-E3824 (2014).
  19. McClatchy, D. B., Ma, Y., Liu, C., Stein, B. D., Martinez-Bartolome, S., Vasquez, D., Hellberg, K., Shaw, R. J., Yates, J. R. Pulsed azidohomoalanine labeling in mammals (palm) detects changes in liver-specific lkb1 knockout mice. Journal of Proteome Research. 14, 4815-4822 (2015).
  20. Schiapparelli, L. M., McClatchy, D. B., Liu, H. H., Sharma, P., Yates, J. R., Cline, H. T. Direct detection of biotinylated proteins by mass spectrometry. Journal of Proteome Research. 13, 3966-3978 (2014).
  21. Wiśniewski, J. R., Zougman, A., Nagaraj, N., Mann, M. Universal sample preparation method for proteome analysis. Nature Methods. 6, 359-362 (2009).
  22. Rajalingam, D., Loftis, C., Xu, J. J., Kumar, T. K. Trichloroacetic acid-induced protein precipitation involves the reversible association of a stable partially structured intermediate. Protein Science. 18, 980-993 (2009).
  23. Fic, E., Kedracka-Krok, S., Jankowska, U., Pirog, A., Dziedzicka-Wasylewska, M. Comparison of protein precipitation methods for various rat brain structures prior to proteomic analysis. Electrophoresis. 31, 3573-3579 (2010).
  24. Sashital, D. G., Greeman, C. A., Lyumkis, D., Potter, C. S., Carragher, B., Williamson, J. R. A combined quantitative mass spectrometry and electron microscopy analysis of ribosomal 30s subunit assembly in e. Coli. Elife. 3, (2014).
  25. Liang, S., Bellato, H. M., Lorent, J., Lupinacci, F. C. S., Oertlin, C., van Hoef, V., Andrade, V. P., Roffé, M., Masvidal, L., Hajj, G. N. M., Larsson, O. Polysome-profiling in small tissue samples. Nucleic Acids Research. 46, e3 (2018).
check_url/it/58079?article_type=t

Play Video

Citazione di questo articolo
Stastna, M., Thomas, A., Germano, J., Pourpirali, S., Van Eyk, J. E., Gottlieb, R. A. Dynamic Proteomic and miRNA Analysis of Polysomes from Isolated Mouse Heart After Langendorff Perfusion. J. Vis. Exp. (138), e58079, doi:10.3791/58079 (2018).

View Video