Summary

SA-β-加拉基沙酶筛查检测,用于识别治疗药物

Published: June 28, 2019
doi:

Summary

细胞衰老是慢性年龄相关疾病发展的关键因素。针对衰老细胞的治疗药物的鉴定为延长健康衰老提供了希望。在这里,我们提出了一个新的测定,以筛选基于测量与衰老相关的β-加拉托西沙酶在单细胞中的异质疗法的识别。

Abstract

细胞衰老是已知对健康寿命产生负面影响的衰老特征之一。能够专门杀死细胞培养中的衰老细胞的药物,称为溶酶,可以减轻体内的衰老细胞负担,延长健康范围。迄今为止,已经确定了多种溶血剂,包括HSP90抑制剂、Bcl-2系列抑制剂、管龙胺、FOXO4抑制肽和达萨替尼/克雷塞汀的组合。在增加的溶血球pH值下检测SA-β-Gal是检测衰老细胞的最佳特征标记之一。使用荧光基质C12FDG结合确定总细胞数,结合DNA间质化Hoechst染料对衰老相关β-乳糖酶(SA-β-Gal)活性的活细胞测量,为通过杀死衰老细胞(溶血)或通过抑制SA-β-Gal和其他衰老细胞表型(异形性)来降低整体SA-β-Gal活性的脱氧治疗药物的屏幕。使用高含量荧光图像采集和分析平台,可快速、高通量地筛选药物库,从而对SA-β-Gal、细胞形态和细胞数量产生影响。

Introduction

伦纳德·海夫利克和保罗·摩尔黑德首次描述了细胞衰老,他们表明正常细胞在培养增殖的能力有限。尽管存在营养物质、生长因子和缺乏接触抑制,衰老细胞仍不能增殖,但仍然具有代谢活性2。这种现象被称为复制性衰老,主要归因于端粒缩短,至少在人类细胞3。进一步的研究表明,细胞也可以诱导进行衰老,以回应其他刺激,如致癌应激(致癌基因诱导衰老,OIS),DNA损伤,细胞毒性药物,或辐照(应力诱发衰老,SIS)4,5,6.为了应对DNA损伤,包括端粒侵蚀,细胞要么衰老,开始不受控制的细胞生长,或者在损伤无法修复时发生凋亡。在这种情况下,细胞衰老似乎是有益的,因为它以肿瘤抑制方式2。相反,由于细胞损伤的积累(包括DNA损伤),衰老会随着衰老而增加。由于衰老细胞可以分泌细胞因子、金属蛋白酶和生长因子,称为衰老相关分泌表型(SASP),这种年龄依赖性增加的细胞衰老和SASP有助于减少组织平衡和随后老化。此外,这种年龄依赖增加的衰老负担已知诱发代谢性疾病,压力敏感性,前列腺综合征,和受损的愈合7,8,并在一定程度上,负责与年龄相关的众多疾病,如动脉粥样硬化,骨关节炎,肌肉退化,溃疡形成,和阿尔茨海默氏病9,10,11,12,13。消除衰老细胞可以帮助预防或延缓组织功能障碍,延长健康范围14。这已经在转基因小鼠模型14,15,16以及通过使用溶血药物和药物组合,发现通过药物筛选努力和生物信息分析在衰老细胞17、18、19、20、21、22中专门诱导的通路。确定更优的脱压治疗药物,能够更有效地减轻衰老细胞负担,是开发健康衰老治疗方法的重要下一步。

在培养和体内,衰老细胞都表现出特征的型板和分子特征。这些衰老标记可能是衰老诱导的原因或结果,或者是这些细胞中分子变化的副产品。然而,在衰老细胞中没有特别的标记。目前,衰老相关β-乳糖酶(SA-β-Gal)检测是测量体外和体内衰老的最佳特征和既定单细胞方法之一。SA-β-Gal是一种溶酶体水解酶,在pH4时具有最佳酶活性。测量其活性在pH6是可能的,因为衰老细胞显示增加的细胞体活性23,24。对于活细胞,通过脂质体碱化获得增加的液化pH与真空H+-ATPase抑制剂巴菲洛霉素A1或内生菌酸化抑制剂氯奎因25,26。5-多地诺霉素二β-D-角质拉诺赛德(C12FDG)用作活细胞中的基质,因为它由于其12种亲碳性小鼠25而保留了细胞中的切块产物。重要的是,SA-β-Gal活性本身与在衰老细胞中识别的任何通路没有直接关系,也没有必要诱导衰老。通过这种测定,即使在异质细胞群和老化组织中,如老年人的皮肤活检,也可以识别衰老细胞。它也被用来显示细胞衰老和老化23之间的相关性,因为它是一个可靠的标志,在若干生物体和条件27,28,29衰老细胞检测, 30.在这里,描述了基于荧光基质C12FDG的高通量SA-β-Gal筛选测定,使用具有强氧应激诱导细胞衰老的原小鼠胚胎成纤维细胞(MEF)进行,其优缺点讨论。虽然这种测定可以在不同的细胞类型中进行,但使用Ercc1缺陷的DNA修复受损的MEF允许在氧化应激条件下更快速地诱导衰老。在小鼠中,脱氧核糖核酸修复内糖酶ERCC1-XPF的表达减少导致DNA修复受损,内源性DNA损伤加速积累,ROS升高,线粒体功能障碍,衰老细胞负担增加,干细胞功能丧失,过早衰老,类似于自然老化31,32。同样,Ercc1缺陷MEF在文化中发生衰老的速度更快17。衰老MEF测定的一个重要特征是,每口井都有衰老和非衰老细胞的混合物,可以清楚地显示衰老细胞特异性效应。然而,尽管我们认为在原发细胞中使用氧化应激诱导衰老更具有生理性,但是这种测定也可用于细胞系,其中衰老是用DNA破坏剂(如etoposide或辐照)诱导的。

Protocol

动物使用得到了斯克里普斯佛罗里达机构动物护理和使用委员会的批准。 1. 生成衰老鼠胚胎成纤维细胞 (MEF) = 12-15 天 在胚胎期13日(E13)从怀孕的雌性小鼠中分离野生型和Ercc1-/-MEFs,如前33所述。注:以下所有步骤均在无菌条件下使用无菌仪器在组织培养罩中执行。 切除眼睛上方的胚胎头。 取出红色组织(心脏和肝脏),必要…

Representative Results

SA-β-Gal活性可以在从复制性衰竭、基因毒性和氧化应激到基因活化23、25、38等多种途径诱导衰老的细胞中检测到。在目前使用Ercc1-缺陷小鼠胚胎成纤维细胞的模型中,规范的细胞生长条件(20%O2)足以诱导细胞衰老后,培养他们几个通道。野生型MEF也经历衰老,但需要额外的通道在20%O2。</sub…

Discussion

SA-β-Gal 是一种定义良好的细胞衰老生物标志物,最初由 Dimri等人发现。(1995) 表明,与增殖细胞相比,在pH 623测定时,衰老的人类成纤维细胞增加了SA-β-Gal的活性。同时,为不同细胞类型和组织建立了SA-β-Gal的体外和体内测定25、39、40。该协议中描述的基于荧光的单细胞方法测量活细胞中的SA-β-Gal,是影响细胞<…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了NIH赠款AG043376(项目2和核心A,PDR;PDR;以及PDR;项目2和核心A;项目2;项目A;项目2;项目A;项目2;项目A;项目2;项目A;项目2;项目A;项目2;项目A;项目2;项目项目1和核心B、LJN和AG056278(项目3和核心A、PDR;项目2,LJN)和格伦基金会(LJN)的赠款。

Materials

DMEM  Corning 10-013-CV medium
Ham's F10 Gibco 12390-035 medium
fetal bovine serum Tissue Culture Biologics 101 serum
1x non-essential amino acids Corning 25-025-Cl amino-acids
bafilomycin A1  Sigma B1793 lysosomal inhibitor
C12FDG Setareh Biotech 7188 b-Gal substrate
Hoechst 33342  Life Technologies H1399 DNA intercalation agent
17DMAG Selleck Chemical LLC 50843 HSP90 inhibitor
InCell6000 Cell Imaging System GE Healthcare High Content Imaging System

Riferimenti

  1. Hayflick, L., Moorhead, P. S. The serial cultivation of human diploid cell strains. Experimental Cell Research. 25, 585-621 (1961).
  2. Campisi, J., di Fagagna, F. D. Cellular senescence: when bad things happen to good cells. Nature Reviews Molecular Cell Biology. 8 (9), 729-740 (2007).
  3. Harley, C. B., Futcher, A. B., Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature. 345 (6274), 458-460 (1990).
  4. Zhu, J., Woods, D., McMahon, M., Bishop, J. M. Senescence of human fibroblasts induced by oncogenic Raf. Genes and Development. 12 (19), 2997-3007 (1998).
  5. Dimri, G. P., Itahana, K., Acosta, M., Campisi, J. Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14(ARF) tumor suppressor. Molecular and Cellular Biology. 20 (1), 273-285 (2000).
  6. Michaloglou, C., et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 436 (7051), 720-724 (2005).
  7. Niedernhofer, L. J. Tissue-specific accelerated aging in nucleotide excision repair deficiency. Mechanisms of Ageing and Development. 129 (78), 408-415 (2008).
  8. Gitenay, D., et al. Glucose metabolism and hexosamine pathway regulate oncogene-induced senescence. Cell Death & Disease. 5, e1089 (2014).
  9. Erusalimsky, J. D., Kurz, D. J. Cellular senescence in vivo: its relevance in ageing and cardiovascular disease. Experimental Gerontology. 40 (8-9), 634-642 (2005).
  10. Kassem, M., Marie, P. J. Senescence-associated intrinsic mechanisms of osteoblast dysfunctions. Aging Cell. 10 (2), 191-197 (2011).
  11. Campisi, J., Andersen, J. K., Kapahi, P., Melov, S. Cellular senescence: A link between cancer and age-related degenerative disease. Seminars in Cancer Biology. 21 (6), 354-359 (2011).
  12. Golde, T. E., Miller, V. M. Proteinopathy-induced neuronal senescence: a hypothesis for brain failure in Alzheimer’s and other neurodegenerative diseases. Alzheimers Research & Therapy. 1 (2), 5 (2009).
  13. Telgenhoff, D., Shroot, B. Cellular senescence mechanisms in chronic wound healing. Cell Death & Differentiation. 12 (7), 695-698 (2005).
  14. Baker, D. J., et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 479 (7372), 232-236 (2011).
  15. Baker, D. J., et al. Naturally occurring p16-positive cells shorten healthy lifespan. Nature. , (2016).
  16. Childs, B. G., et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science. 354 (6311), 472-477 (2016).
  17. Fuhrmann-Stroissnigg, H., et al. Identification of HSP90 inhibitors as a novel class of senolytics. Nature Communications. 8 (1), 422 (2017).
  18. Zhu, Y., et al. New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463. Aging. 9 (3), 955-963 (2017).
  19. Zhu, Y., et al. Identification of a Novel Senolytic Agent, Navitoclax, Targeting the Bcl-2 Family of Anti-Apoptotic Factors. Aging Cell. , (2015).
  20. Zhu, Y., et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell. , (2015).
  21. Baar, M. P., et al. Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging. Cell. 169 (1), 132-147 (2017).
  22. Jeon, O. H., et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nature. , (2017).
  23. Dimri, G. P., et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Sciences USA. 92 (20), 9363-9367 (1995).
  24. Itahana, K., Campisi, J., Dimri, G. P. Methods to detect biomarkers of cellular senescence: the senescence-associated beta-galactosidase assay. Methods in Molecular Biology. 371, 21-31 (2007).
  25. Debacq-Chainiaux, F., Erusalimsky, J. D., Campisi, J., Toussaint, O. Protocols to detect senescence-associated beta-galactosidase (SA-[beta]gal) activity, a biomarker of senescent cells in culture and in vivo. Nature Protocols. 4 (12), 1798-1806 (2009).
  26. Cahu, J., Sola, B. A sensitive method to quantify senescent cancer cells. Journal of Visualized Experiments. 78 (78), (2013).
  27. Collado, M., et al. Tumour biology: Senescence in premalignant tumours. Nature. 436 (7051), 642 (2005).
  28. Krishnamurthy, J., et al. Ink4a/Arf expression is a biomarker of aging. The Journal of Clinical Investigation. 114 (9), 1299-1307 (2004).
  29. Mishima, K., et al. Senescence-associated beta-galactosidase histochemistry for the primate eye. Investigative Ophthalmology, Visual Science. 40 (7), 1590-1593 (1999).
  30. Melk, A., et al. Expression of p16INK4a and other cell cycle regulator and senescence associated genes in aging human kidney. Kidney International. 65 (2), 510-520 (2004).
  31. Niedernhofer, L. J., et al. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature. 444 (7122), 1038-1043 (2006).
  32. Wang, J., Clauson, C. L., Robbins, P. D., Niedernhofer, L. J., Wang, Y. The oxidative DNA lesions 8,5′-cyclopurines accumulate with aging in a tissue-specific manner. Aging Cell. 11 (4), 714-716 (2012).
  33. Jozefczuk, J., Drews, K., Adjaye, J. Preparation of mouse embryonic fibroblast cells suitable for culturing human embryonic and induced pluripotent stem cells. Journal of Visualized Experiments. (64), (2012).
  34. Jagannathan, L., Cuddapah, S., Costa, M. Oxidative stress under ambient and physiological oxygen tension in tissue culture. Current Pharmacology Reports. 2 (2), 64-72 (2016).
  35. Meuter, A., et al. Markers of cellular senescence are elevated in murine blastocysts cultured in vitro: molecular consequences of culture in atmospheric oxygen. J Assist Reprod Genet. 31 (10), 1259-1267 (2014).
  36. Robinson, A. R., et al. Spontaneous DNA damage to the nuclear genome promotes senescence, redox imbalance and aging. Redox Biology. 17, 259-273 (2018).
  37. Zhang, J. H., Chung, T. D., Oldenburg, K. R. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. Journal Of Biomolecular Screening. 4 (2), 67-73 (1999).
  38. Zhao, H., Darzynkiewicz, Z. Biomarkers of cell senescence assessed by imaging cytometry. Methods in Molecular Biology. 965, 83-92 (2013).
  39. Yang, N. -. C., Hu, M. -. L. A fluorimetric method using fluorescein di-β-d-galactopyranoside for quantifying the senescence-associated β-galactosidase activity in human foreskin fibroblast Hs68 cells. Analytical Biochemistry. 325 (2), 337-343 (2004).
  40. Zhao, J., et al. Quantitative Analysis of Cellular Senescence in Culture and In Vivo. Current Protocols in Cytometry. 79, (2017).
  41. Capparelli, C., et al. CDK inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, "fueling" tumor growth via paracrine interactions, without an increase in neo-angiogenesis. Cell Cycle. 11 (19), 3599-3610 (2012).
  42. Coppe, J. P., Desprez, P. Y., Krtolica, A., Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annual Review of Pathology. 5, 99-118 (2010).
  43. Mah, L. J., El-Osta, A., Karagiannis, T. C. GammaH2AX as a molecular marker of aging and disease. Epigenetics. 5 (2), 129-136 (2010).
  44. Hewitt, G., et al. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nature Communications. 3, 708 (2012).
  45. Narita, M., et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell. 113 (6), 703-716 (2003).
  46. Georgakopoulou, E. A., et al. Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging-Us. 5 (1), 37-50 (2013).
  47. Severino, J., Allen, R. G., Balin, S., Balin, A., Cristofalo, V. J. Is β-Galactosidase Staining a Marker of Senescence in Vitro and in Vivo?. Experimental Cell Research. 257 (1), 162-171 (2000).
check_url/it/58133?article_type=t

Play Video

Citazione di questo articolo
Fuhrmann-Stroissnigg, H., Santiago, F. E., Grassi, D., Ling, Y., Niedernhofer, L. J., Robbins, P. D. SA-β-Galactosidase-Based Screening Assay for the Identification of Senotherapeutic Drugs. J. Vis. Exp. (148), e58133, doi:10.3791/58133 (2019).

View Video