Summary

单细胞荧光显微镜定量 Efferocytosis 的研究

Published: August 18, 2018
doi:

Summary

Efferocytosis, 凋亡细胞的吞噬去除, 是需要保持动态平衡, 并由受体和信号通路, 以允许识别, 吞没和内化的凋亡细胞的促进。在此, 我们提出了一个荧光显微镜协议的量化 efferocytosis 和 efferocytic 信号通路的活动。

Abstract

研究 efferocytosis 的调控需要能够准确量化凋亡细胞摄取的方法, 并探讨控制 efferocytosis 的信号和细胞过程。这种量化可能很难执行, 因为凋亡细胞往往 efferocytosed 零碎, 从而有必要的方法, 可以准确地划定的 efferocytosed 部分的凋亡目标与残留 unengulfed 细胞碎片。本文概述的方法利用双标记方法准确量化 efferocytes 的 efferocytosis 和 efferocytic 能力的动态, 如巨噬细胞。凋亡细胞的细胞质用细胞追踪染料进行标记, 以便对所有凋亡细胞源材料进行监测, 而凋亡细胞的表面 biotinylation 则允许在内化和非内内在之间进行分化。凋亡细胞分数。efferocytes 的 efferocytic 容量是通过对活体或固定细胞的荧光图像进行测定的, 并通过链亲和素染色的区分来定量测定束缚与内化目标的数量。这种方法比流式细胞术等方法具有多种优点, 即非 efferocytosed 与 efferocytosed 凋亡细胞分数的精确划分, 活细胞显微镜测量 efferocytic 动力学的能力, 以及在表达荧光标记转基因的细胞中对细胞信号进行研究的能力。结合, 本协议中概述的方法作为一个灵活的实验方法的基础, 可用于准确量化 efferocytic 活动和审问细胞信号通路活跃在 efferocytosis。

Introduction

细胞凋亡, 或程序性细胞死亡, 是一种高度调控的生理过程, 发生在大多数多细胞有机体, 是关键的发展和稳态1。细胞凋亡除了参与正常细胞更替和胚胎发育外, 还能消除组织中受感染或受损的细胞, 并可因感染、炎症、癌症以及医疗干预而触发。如放疗或类固醇1。凋亡细胞在细胞表面暴露出 “吃-我” 信号, 在一系列专业和非专业吞噬中被受体识别, 统称为 “efferocytes”。这些受体的参与通过一个被称为 efferocytosis2,3的过程诱导 efferocyte 凋亡细胞的吸收和降解。磷脂是最具特色的食我信号驱动 efferocytosis。它通常局限于血浆膜的内小叶, 凋亡激活一个脂质 scramblase, 扰乱这种膜不对称, 从而暴露磷脂在细胞表面4。磷脂是在一些非凋亡细胞的细胞外表面发现的, 如成熟巨细胞和活化血小板。然而, 这些细胞不是 efferocytosed 由于存在 “不吃我” 信号, 例如 CD47, 在他们的细胞表面5,6,7。暴露的磷脂是由 efferocytes 表达的 efferocytic 受体阵列识别出来的。这些受体与磷脂的结合, 直接或通过 opsonins 的帮助, 激活信号通路, 促进吞没凋亡细胞成膜界的液泡称为 efferosome8,9,10,11,12. efferosome 与内涵体和溶酶体依次融合, 提供酸化 efferosome 所需的分子机械, 并降解凋亡细胞1314。一旦降解, 凋亡细胞衍生材料被贩运到回收 endosome-一个过程, 限制免疫反应的凋亡细胞衍生抗原, 并可能允许从凋亡细胞13恢复养分, 15。efferocytosis 的失败导致凋亡细胞的清除受损;这些未清除细胞最终会经历次生坏死。坏死细胞释放亲炎症胞浆的内容, 病原体和自身抗原进入细胞外环境, 从而驱动一系列感染, 炎症和自身免疫性疾病16,17。同时, 细胞凋亡和 efferocytosis 促进了死亡和死亡细胞的清除, 并允许维持组织的稳态。

研究 efferocytosis 的分子机制需要方法, 提供一个明确的定量的凋亡细胞摄取。这种量化是复杂的事实, 不像其他吸收机制, 如吞和吞噬功能18,19, efferocytosis 可能不会导致吞没完整的目标细胞, 导致零碎吸收凋亡细胞的 efferocyte20。此处描述的协议描述了一种体外efferocytosis 分析, 它提供了对个体凋亡细胞内化和非内隐部分的精确划分, 并可与各种固定细胞和活细胞显微镜的方法。传统的吞噬功能检测在实验结束时添加特定于吞噬目标的抗体, 以标记非内化目标, 因为我们的方法不同于用共价键链接的生物素21标记凋亡目标。,22. 虽然在本试验中可以使用凋亡细胞特异抗体, 但 biotinylation 方法允许任何含蛋白质的靶标记, 并避免在执行染色时具有继发抗体交叉反应性的潜在问题.具体地说, 我们概述了细胞追踪染料和生物素双重染色的凋亡 Jurkat 细胞的制备。细胞追踪染料允许在 efferocytosis 期间追踪凋亡的细胞源材料, 而表面 biotinylation 则允许从 efferocytosed 凋亡细胞的非内化部分中内隐化。我们还描述了 J774.2 和 THP-1 细胞系的培养和制备, 用作小鼠和人的 efferocytes, 单核细胞衍生的 M2 巨噬细胞作为原电池 efferocytosis 的例子, Jurkat 细胞用作 efferocytic 靶。这些方法可以很容易地应用到其他细胞系或主细胞, 目标细胞发生任何形式的细胞死亡 (凋亡, 坏死和 necroptosis), 以及微米大小模仿, 通过脂质涂层模拟凋亡细胞或efferocytic 受体所特有的配体涂层。

本协议中概述的方法比基于流式细胞术的方法在2324领域中的应用有若干优点。通过对吞噬凋亡细胞相互作用的直接成像, 结合对全内和非内化凋亡细胞材料的清晰标记, 可进行 efferocytosis 定量测量。此外, 使用 pH 不敏感的显影限制混淆因素, 如抑制 FITC 和 GFP 荧光在溶酶酶的 pH 值混淆一些替代方法25。最后, 虽然没有详细描述, 这些方法可以使用 efferocytes 表达荧光标记转基因, 或与后固定染色, 以允许量化的信号分子活动和监测efferocytosis 过程中的细胞过程。

Protocol

来自健康志愿者的血液收集被西安大略大学健康科学研究伦理学委员会批准。静脉穿刺是根据三局人类研究政策声明的指引进行的。 1. THP-1 单核细胞系的培养和制备 培养 THP-1 单核细胞作为悬浮培养在 T25 烧瓶在37°c + 5% CO2。细胞应该生长在5毫升的罗斯威尔公园纪念研究所 1640 (RPMI 1640) + 10% 胎牛血清 (血清)。 每天通过轻轻摇动烧瓶, 将细胞均匀地…

Representative Results

夜间培养的 Jurkat 细胞与1µM staurosporine 导致细胞凋亡 > 95%, 可证实与蛋白 V 染色 (图 1)。其他细胞类型可以用于这些实验, 虽然 staurosporine 的浓度和 staurosporine 治疗的时间将需要为每个细胞线进行优化。为了可靠的检测和定量的 efferocytosis, > 80% 的细胞应该是凋亡之前, 添加到 efferocytes。其他诱导细胞凋亡 (如热休克, 甙和紫外光) 也可以使用, 但?…

Discussion

本协议中概述的方法使动态 efferocytic 过程的成像和量化能够同时使用固定单元和活细胞方法。这些方法比一般使用的流式细胞术23,24提供了一些优势。使用固定样本进行内出染色, 可以更可靠、准确地量化 efferocytosis 的速率和程度, 事实上, 许多流式细胞术的方法只是标记凋亡细胞和不同显影的巨噬细胞, 并分数 efferocytosis 作为巨噬细胞与凋亡细胞核染色…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项研究由加拿大卫生研究院 (卫生研究院) 运营赠款 MOP-123419, 加拿大自然科学和工程研究委员会 418194, 以及安大略研究和创新部早期研究奖资助。DGW 贡献了一些图象, 对协议的优选和原稿的创作;他的资金来自利物浦大学的一个泵浦资助。Vanier 研究生奖学金和卫生研究院博士奖学金。供资机构在研究设计、数据收集和分析、决定出版或编写手稿方面没有任何作用。

Materials

RPMI 1640 Media Wisent 3500-000-EL
DMEM Media Wisent 319-005-CL
Fetal Bovine Serum (FBS) Wisent 080-150
PBS Wisent 311-010-CL
18 mm circular glass coverslips #1.5 thickness Electron Microscopy Sciences 72290-08 Size and shape of coverslip is not critical, but 18 mm fit into the wells of a standard 12-well plate which simplifies cell culture
Staurosporine Cayman Chemical 81590 Dissolve in DMSO at 1 mM (1,000x stock solution)
Annexin V-Alexa 488 ThermoFisher R37174
EZ-Link NHS-Biotin ThermoFisher 20217 Store in a dessicator. Do not prepare a stock solution.
DMSO Sigma-Aldrich D2650
CellTrace FarRed ThermoFisher C34572
CellTrace Orange ThermoFisher C34851
Hoescht 33342 ThermoFisher 62249
FITC-Streptavadin ThermoFisher SA1001
Lympholyte-poly cell sepration medium Cedarlane Labs CL5071
Recombinant Human M-CSF Peprotech 200-04
Recombinant Human IL-4 Peprotech 300-25
J774.2 Macrophage Cell Line Sigma-Aldrich 85011428-1VL
THP-1 Human Monocyte Cell Line ATCC TIB-202
Jurkat T Cell Line ATCC TIB-152

Riferimenti

  1. Elmore, S. Apoptosis: A review of programmed cell death. Toxicologic Pathology. 35 (4), 495-516 (2007).
  2. Toda, S., Hanayama, R., Nagata, S. Two-step engulfment of apoptotic cells. Molecular and Cellular Biology. 32 (1), 118-125 (2012).
  3. Ravichandran, K. S. Find-me and eat-me signals in apoptotic cell clearance: Progress and conundrums. The Journal of Experimental Medicine. 207 (9), 1807-1817 (2010).
  4. Fadok, V. A., Voelker, D. R., Campbell, P. A., Cohen, J. J., Bratton, D. L., Henson, P. M. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. Journal of Immunology. 148 (7), 2207-2216 (1992).
  5. Bevers, E. M., Comfurius, P., van Rijn, J. L., Hemker, H. C., Zwaal, R. F. Generation of prothrombin-converting activity and the exposure of phosphatidylserine at the outer surface of platelets. European Journal of Biochemistry. 122 (2), 429-436 (1982).
  6. Callahan, M. K., Williamson, P., Schlegel, R. A. Surface expression of phosphatidylserine on macrophages is required for phagocytosis of apoptotic thymocytes. Cell Death and Differentiation. 7 (7), 645-653 (2000).
  7. Kojima, Y., et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature. 536, 86-90 (2016).
  8. Seitz, H. M., Camenisch, T. D., Lemke, G., Earp, H. S., Matsushima, G. K. Macrophages and dendritic cells use different Axl/Mertk/Tyro3 receptors in clearance of apoptotic cells. Journal of Immunology. 178, 5635-5642 (2007).
  9. Ichimura, T., Asseldonk, E. J. P. V., Humphreys, B. D., Gunaratnam, L., Duffield, J. S., Bonventre, J. V. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. The Journal of Clinical Investigation. 118 (5), 1657-1668 (2008).
  10. Flannagan, R. S., Canton, J., Furuya, W., Glogauer, M., Grinstein, S. The phosphatidylserine receptor TIM4 utilizes integrins as coreceptors to effect phagocytosis. Molecular Biology of the Cell. 25 (9), 1511-1522 (2014).
  11. Park, D., et al. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature. 450 (7168), 430-434 (2007).
  12. Elliott, M. R., Koster, K. M., Murphy, P. S. Efferocytosis Signaling in the Regulation of Macrophage Inflammatory Responses. Journal of Immunology. 198 (4), 1387-1394 (2017).
  13. Yin, C., Kim, Y., Argintaru, D., Heit, B. Rab17 mediates differential antigen sorting following efferocytosis and phagocytosis. Cell Death & Disease. 7 (12), e2529 (2016).
  14. Kinchen, J. M., et al. A pathway for phagosome maturation during engulfment of apoptotic cells. Nature Cell Biology. 10 (5), 556-566 (2008).
  15. Yin, C., Argintaru, D., Heit, B. Rab17 mediates intermixing of phagocytosed apoptotic cells with recycling endosomes. Small GTPases. , 1-9 (2017).
  16. Silva, M. T. Secondary necrosis: The natural outcome of the complete apoptotic program. FEBS letters. 584 (22), 4491-4499 (2010).
  17. Thorp, E. B. Mechanisms of failed apoptotic cell clearance by phagocyte subsets in cardiovascular disease. Apoptosis. 15 (9), 1124-1136 (2010).
  18. Sarantis, H., Grinstein, S. Monitoring phospholipid dynamics during phagocytosis: application of genetically-encoded fluorescent probes. Methods in Cell Biology. 108, 429-444 (2012).
  19. Steinberg, B. E., Grinstein, S. Analysis of macrophage phagocytosis: Quantitative assays of phagosome formation and maturation using high-throughput fluorescence microscopy. Methods in Molecular Biology. 531, 45-56 (2009).
  20. Wang, J., Hossain, M., Thanabalasuriar, A., Gunzer, M., Meininger, C., Kubes, P. Visualizing the function and fate of neutrophils in sterile injury and repair. Science. 358 (6359), 111-116 (2017).
  21. Scott, C. C., et al. Phosphatidylinositol-4,5-bisphosphate hydrolysis directs actin remodeling during phagocytosis. The Journal of Cell Biology. 169 (1), 139-149 (2005).
  22. Greenlee-Wacker, M. C., Rigby, K. M., Kobayashi, S. D., Porter, A. R., DeLeo, F. R., Nauseef, W. M. Phagocytosis of Staphylococcus aureus by human neutrophils prevents macrophage efferocytosis and induces programmed necrosis. Journal of Immunology. 192 (10), 4709-4717 (2014).
  23. Wootton, D. G., et al. Recovery from pneumonia requires efferocytosis which is impaired in smokers and those with low body mass index and enhanced by statins. Thorax. 71 (11), 1052-1054 (2016).
  24. Miksa, M., Komura, H., Wu, R., Shah, K. G., Wang, P. A novel method to determine the engulfment of apoptotic cells by macrophages using pHrodo succinimidyl ester. Journal of Immunological Methods. 342 (1-2), 71-77 (2009).
  25. Kneen, M., Farinas, J., Li, Y., Verkman, A. S. Green fluorescent protein as a noninvasive intracellular pH indicator. Biophysical Journal. 74 (3), 1591-1599 (1998).
  26. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  27. Johnson, D. E., Ostrowski, P., Jaumouillé, V., Grinstein, S. The position of lysosomes within the cell determines their luminal pH. The Journal of Cell Biology. 212 (6), 677-692 (2016).
  28. Evans, A. L., Blackburn, J. W. D., Yin, C., Heit, B. Quantitative efferocytosis assays. Methods in Molecular Biology. 1519, 25-41 (2017).
  29. Icha, J., Weber, M., Waters, J. C., Norden, C. Phototoxicity in live fluorescence microscopy, and how to avoid it. BioEssays. 39 (8), (2017).
  30. Flannagan, R. S., Harrison, R. E., Yip, C. M., Jaqaman, K., Grinstein, S. Dynamic macrophage "probing" is required for the efficient capture of phagocytic targets. The Journal of Cell Biology. 191 (6), 1205-1218 (2010).
  31. Joshi, G. N., Gilberti, R. M., Knecht, D. A. Single cell analysis of phagocytosis, phagosome maturation, phagolysosomal leakage, and cell death following exposure of macrophages to silica particles. Methods in Molecular Biology. 1519, 55-77 (2017).
  32. Karaji, N., Sattentau, Q. J. Efferocytosis of Pathogen-Infected Cells. Frontiers in Immunology. 8 (DEC), 1863 (1863).
  33. Harrison, R. E., Bucci, C., Vieira, O. V., Schroer, T. A., Grinstein, S. Phagosomes fuse with late endosomes and/or lysosomes by extension of membrane protrusions along microtubules: role of Rab7 and RILP. Molecular and Cellular Biology. 23 (18), 6494-6506 (2003).
  34. Reiners, J. J., Kleinman, M., Kessel, D., Mathieu, P. A., Caruso, J. A. Nonesterified cholesterol content of lysosomes modulates susceptibility to oxidant-induced permeabilization. Free Radical Biology & Medicine. 50 (2), 281-294 (2011).
  35. Boya, P., et al. Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. The Journal of Experimental Medicine. 197 (10), 1323-1334 (2003).
  36. Fairn, G. D., Grinstein, S. How nascent phagosomes mature to become phagolysosomes. Trends in Immunology. , 1-9 (2012).
  37. Canton, J., Khezri, R., Glogauer, M., Grinstein, S. Contrasting phagosome pH regulation and maturation in human M1 and M2 macrophages. Molecular Biology of the Cell. 25 (21), 3330-3341 (2014).
  38. Phanse, Y., et al. Analyzing cellular internalization of nanoparticles and bacteria by multi-spectral imaging flow cytometry. Journal of Visualized Experiments. (64), e3884 (2012).
  39. Sommer, C., Straehle, C., Kothe, U., Hamprecht, F. A. Ilastik: Interactive learning and segmentation toolkit. 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. , 230-233 (2011).
  40. Davies, S. P., Reynolds, G. M., Stamataki, Z. Clearance of apoptotic cells by tissue epithelia: A putative role for hepatocytes in liver efferocytosis. Frontiers in Immunology. 9, (2018).
  41. Ismail, O. Z., Zhang, X., Bonventre, J. V., Gunaratnam, L. G protein α12(Gα12) is a negative regulator of kidney injury molecule-1-mediated efferocytosis. American Journal of Physiology. Renal Physiology. 310 (7), F607-F620 (2016).
  42. Vaught, D. B., Stanford, J. C., Cook, R. S. Efferocytosis creates a tumor microenvironment supportive of tumor survival and metastasis. Cancer Cell & Microenvironment. 2 (1), (2015).
  43. Heit, B., Yeung, T., Grinstein, S. Changes in mitochondrial surface charge mediate recruitment of signaling molecules during apoptosis. American Journal of Physiology. Cell Physiology. 300 (1), C33-C41 (2011).
  44. Múnera, J. O., Wells, J. M. Generation of Gastrointestinal Organoids from Human Pluripotent Stem Cells. Methods in Molecular Biology. 1597, 167-177 (2017).
  45. Truman, L. A., et al. CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood. 112 (13), 5026-5036 (2008).
  46. Evans, A. L., et al. Antagonistic Coevolution of MER Tyrosine Kinase Expression and Function. Molecular Biology and Evolution. , (2017).
  47. Flannagan, R. S., Heit, B., Heinrichs, D. E. Intracellular replication of Staphylococcus aureus in mature phagolysosomes in macrophages precedes host cell death, and bacterial escape and dissemination. Cellular Microbiology. , (2015).
  48. Mubaid, F., Brown, C. M. Less is More: Longer Exposure Times with Low Light Intensity is Less Photo-Toxic. Microscopy Today. 25 (06), 26-35 (2017).
  49. Bogdanov, A. M., Kudryavtseva, E. I., Lukyanov, K. A. Anti-fading media for live cell GFP imaging. PloS One. 7 (12), e53004 (2012).
  50. Rossner, M., Yamada, K. M. What’s in a picture? The temptation of image manipulation. The Journal of Cell Biology. 166 (1), 11-15 (2004).
  51. Sage, D., et al. DeconvolutionLab2: An open-source software for deconvolution microscopy. Methods. 115, 28-41 (2017).
  52. Ma, G. Z. M., Stankovich, J., Kilpatrick, T. J., Binder, M. D., Field, J. Polymorphisms in the receptor tyrosine kinase MERTK gene are associated with multiple sclerosis susceptibility. PloS One. 6 (2), e16964 (2011).
  53. Thorp, E., Cui, D., Schrijvers, D. M., Kuriakose, G., Tabas, I. Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of apoe-/- mice. Arteriosclerosis, Thrombosis, and Vascular Biology. 28 (8), 1421-1428 (2008).
  54. Nguyen, K. -. Q. N., et al. Overexpression of MERTK Receptor Tyrosine Kinase in Epithelial Cancer Cells Drives Efferocytosis in a Gain-of-Function Capacity. The Journal of Biological Chemistry. 289 (37), 25737-25749 (2014).
  55. Morimoto, K., et al. Lovastatin enhances clearance of apoptotic cells (efferocytosis) with implications for chronic obstructive pulmonary disease. Journal of Immunology. 176 (12), 7657-7665 (2006).
check_url/it/58149?article_type=t

Play Video

Citazione di questo articolo
Taruc, K., Yin, C., Wootton, D. G., Heit, B. Quantification of Efferocytosis by Single-cell Fluorescence Microscopy. J. Vis. Exp. (138), e58149, doi:10.3791/58149 (2018).

View Video